Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 024204    DOI: 10.1088/1674-1056/ad9731
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Planar structure of organic photodetector for low dark current

Mohammad Nofil1, Amirul Ashraf Md Sabri1, Fadlan Arif Natashah1, Tahani M Bawazeer2, Mohammad S Alsoufi3, Nur Adilah Roslan4,†, and Azzuliani Supangat1,‡
1 Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia;
2 Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia;
3 Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia;
4 Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Malaysia
Abstract  The focus of this study is on investigating the vanadyl 2,9,16,23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO) and its blend with o-xylenyl C60 bis-adduct (OXCBA), for use as a lateral ultraviolet organic photodetector. The research focuses on improving dark current reduction, which is a challenge in lateral organic photodetector. By integrating the OXCBA, low dark current values of 4.83 ${\rm nA}\cdot{\rm cm}^{-2}$ ($D^*_{\rm shot} = 1.414\times 10^{11}~{\rm Jones}$) have been achieved as compared to the stand-alone VoPcPhO device of 14.06 ${\rm nA}\cdot{\rm cm}^{-2}$. The major contributing factors to dark current reduction are due to the efficient charge transfer at the photoactive-electrode interface, the deep highest occupied molecular orbital (HOMO) level of OXCBA, which leads to favorable energy level alignments hindering hole injection, and the occurrence of bulk heterojunction vertical phase segregation between VOPcPhO and OXCBA. These findings shed light on the relationship between the organic photoconductor's material composition, morphology, and performance metrics and open new avenues for metal phthalocyanine-based lateral ultraviolet organic photodetectors with low dark current and enhanced performance.
Keywords:  small molecule      dark current      ultra-violet (UV) sensor      device physics  
Received:  02 July 2024      Revised:  22 November 2024      Accepted manuscript online: 
PACS:  42.79.Pw (Imaging detectors and sensors)  
  42.70.Jk (Polymers and organics)  
  61.82.Fk (Semiconductors)  
  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
Fund: The authors would like to acknowledge the financial support from the Ministry of Science, Technology and Innovation with Grant No. MOSTI004-2023SRF.
Corresponding Authors:  Nur Adilah Roslan, Azzuliani Supangat     E-mail:  azzuliani@um.edu.my;nur.adilah@upm.edu.my

Cite this article: 

Mohammad Nofil, Amirul Ashraf Md Sabri, Fadlan Arif Natashah, Tahani M Bawazeer, Mohammad S Alsoufi, Nur Adilah Roslan, and Azzuliani Supangat Planar structure of organic photodetector for low dark current 2025 Chin. Phys. B 34 024204

[1] Li Q, Guo Y and Liu Y 2019 Chem. Mater. 31 6359
[2] Wang H, et al. 2017 Adv. Mater. 29
[3] Li G X, Wang Y K, Huang L X and Sun W H 2022 ACS Appl. Electron. Mater. 4 1485
[4] Bao C X, Yang J, Bai S, Xu W D, Yan Z B, Xu Q Y, Liu J M, Zhang W J and Gao F 2018 J. Adv. Mater. 30 1803422
[5] Xie C, Lu X T, Tong X W, et al. 2019 Adv. Funct. Mater. 29 1806006
[6] Biswas B and Saha B 2019 Phys. Rev. Mater. 3 020301
[7] Dou L T, You J B, Hong Z R, et al. 2013 Adv. Mater. 25 6642
[8] Baeg K J, Binda M, Natali D, et al. 2013 Adv Mater. 25 4267
[9] Abdullah S M, Ahmad Z, Aziz F and Sulaiman K 2012 Org. Electron. 13 2532
[10] Zafar Q, Ahmad Z, Sulaiman K, et al. 2014 Sens. Act. A:Phys. 206 138
[11] Pan J, Deng W, Xu X Z, Jiang T H, Zhang X J and Jie J S 2019 Chin. Phys. B 28 038102
[12] Pierre A, Deckman I, Lechene P B and Arias A C 2015 Adv. Mater. 27 6411
[13] Chow P C and Someya T 2020 Adv. Mater. 32 1902045
[14] Esopi M R, Calcagno M and Yu Q 2017 Adv. Mater. Technol. 2 1700025
[15] Agostinelli T, Campoy-Quiles M, Blakesley J C, Speller R, Bradley D D C and Nelson J 2008 Appl. Phys. Lett. 93 203305
[16] Wang H Y, Xing S, Zheng T F, et al. 2018 ACS Appl. Mater. Int. 10 3856
[17] Biele M, Benavides C M, Hurdler J, Tedde S F, Brabec C J and Schmidt O 2019 Adv. Mater. Technol. 4 1800158
[18] Kim H U, Park O Y, Park J B and Hwang D H 2016 J. Nanosci. Nanotechnol. 16 10465
[19] Kim K H, Kang H, Nam S Y, et al. 2011 Chem. Mater. 23 5090
[20] Hisamuddin S N, et al. Synthetic Metals 2020 268 116506
[21] El-Nahass M M, Abd-El-Rahman K F, Al-Ghamdi A A and Asiri A M 2004 Physica B 344 398
[22] Senthilarasu S, Sathyamoorthy R, Lalitha S, Subbarayan A and Natarajan K 2004 Sol. Energy Mater. Sol. Cells 82 179
[23] El-Nahass M, Zeyada H M, Aziz M S and El-Ghamaz N A 2004 Opt. Mater. 27 491
[24] Coulter J B and Birnie D P III 2018 Phys. Status Solidi B 255 1700393
[25] Aziz F, Sulaiman K, Karimov K S, Muhammad M R, Sayyad M H and Majlis B Y 2012 Mol. Crys. Liq. Crys. 566 22
[26] Dong H, et al. 2012 Chemical Society Reviews 2012 41 1754
[27] Murugesan V S, et al. 2015 International Journal of Photoenergy 2015
[28] Simone G, et al. 2020 Adv. Funct. Mater. 30 1904205
[29] Simone G, et al. 2020 Adv. Opt. Mater. 8 1901568
[30] Md Sabri A A, Natashah F A, Hisamuddin S N, et al. 2022 Photonics 9 947
[31] Hisamuddin S N, et al. 2020 Synthetic Metals 268 116506
[32] Sharma N, et al. 2019 Opt. Mater. 95 109273
[33] Kim T, et al. 2022 ACS Appl. Electron. Mater. 4 130
[34] Ren H, et al. 2021 Adv. Sci. 8 2002418
[35] Fang Y, Armin A, Meredith P and Huang J 2019 Nat. Photon. 13 1
[36] Zhao X, Li X, Liu M, et al. 2024 Acta Phys. Chim. Sin. 40 2311021(in Chinese)
[37] Zhao X, Liu M, Wang J, et al. 2024 ACS Appl. Mater. Int. 16 35400
[38] Liu M, Yao Q, Li S, et al. 2024 Adv. Opt. Mater. 12 2303216
[39] Basir A, Alzahrani H, Sulaiman K, et al. 2021 Physica B 2021 600 412546
[40] Guo D, Yang D Z, Zhao J C, Vadim A and Ma D G 2020 J. Mater. Chem. C 8 9024
[41] Lee C C, Biring J, Ren S J, et al. 2019 Org. Electron. 65 150
[42] Wang X, Wang J Y, Zhao H M, Jin H and Yu J S 2019 Mater. Lett. 243 81
[1] Planar InAlAs/InGaAs avalanche photodiode with 360 GHz gain×bandwidth product
Shuai Wang(王帅), Han Ye(叶焓), Li-Yan Geng(耿立妍), Fan Xiao(肖帆), Yi-Miao Chu(褚艺渺), Yu Zheng(郑煜), and Qin Han(韩勤). Chin. Phys. B, 2023, 32(9): 098507.
[2] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[3] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
[4] Electronic states and molecular orientation of ITIC film
Ying-Ying Du(杜莹莹), De-Qu Lin(林德渠), Guang-Hua Chen(陈光华), Xin-Yuan Bai(白新源), Long-Xi Wang(汪隆喜), Rui Wu(吴蕊), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Hong-Nian Li(李宏年). Chin. Phys. B, 2018, 27(8): 088801.
[5] Scalability of dark current in silicon PIN photodiode
Ya-Jie Feng(丰亚洁), Chong Li(李冲), Qiao-Li Liu(刘巧莉), Hua-Qiang Wang(王华强), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Xia Guo(郭霞). Chin. Phys. B, 2018, 27(4): 048501.
[6] Total ionizing dose effects in pinned photodiode complementary metal-oxide-semiconductor transistor active pixel sensor
Lin-Dong Ma(马林东), Yu-Dong Li(李豫东), Lin Wen(文林), Jie Feng(冯婕), Xiang Zhang(张翔), Tian-Hui Wang(王田珲), Yu-Long Cai(蔡毓龙), Zhi-Ming Wang(王志铭), Qi Guo(郭旗). Chin. Phys. B, 2018, 27(10): 104207.
[7] Analysis of proton and γ-ray radiation effects on CMOS active pixel sensors
Lindong Ma(马林东), Yudong Li(李豫东), Qi Guo(郭旗), Lin Wen(文林), Dong Zhou(周东), Jie Feng(冯婕), Yuan Liu(刘元), Junzhe Zeng(曾骏哲), Xiang Zhang(张翔), Tianhui Wang(王田珲). Chin. Phys. B, 2017, 26(11): 114212.
No Suggested Reading articles found!