Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086202    DOI: 10.1088/1674-1056/ade1c3
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Theoretical investigation on the H sublattice in CaH6 and energetic performance

Zhihong Huang(黄植泓)1, Nan Li(李楠)1,†, Jun Zhang(张俊)2,‡, Xiuyuan Li(李修远)1, Zihuan Peng(彭梓桓)1, Chongwen Jiang(江崇文)1, and Changqing Jin(靳常青)2
1 State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Metal superhydride compounds (MSHCs) have attracted much attention in the fields of high-pressure physics due to the superconductivity properties deriving from the metallic-hydrogen-like characteristics and relatively mild synthesis conditions. However, their energetic performance and related potential applications are still open issues till now. In this study, CaH$_{6}$ and NbH$_{3}$, which exhibit evidently differences in their geometric and electronic structures, were chosen as examples of MSHCs to investigate their energetic performance. The structure, bonding features and energetic performance of CaH$_{6}$ and NbH$_{3}$ were predicted based on first-principles calculations. Our results reveal that high-pressure MSHCs always exhibit high energy densities. The range of theoretical energy density of CaH$_{6}$ was predicted as 2.3-5.3 times of TNT, while the value for NbH$_{3}$ was predicted as 1.2 times of TNT. Our study further uncover that CaH$_{6}$ has outstanding energetic properties, which are ascribed to the three-dimensional (3D) aromatic H sublattice and the strong covalent bonding between the H atoms. Moreover, the detonation process and products of rapid energy-release stage of CaH$_{6}$ were simulated via AIMD method, based on which its superior combustion performance was predicted and its specific impulse was calculated as 490.66 s. This study not only enhances the chemical understanding of MSHCs, but also extends the paradigm of traditional energetic materials and provides a new route to design novel high energy density materials.
Keywords:  metal superhydride compounds      energetic performance      first-principles simulation      high pressure  
Received:  16 April 2025      Revised:  03 June 2025      Accepted manuscript online:  06 June 2025
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  63.90.+t (Other topics in lattice dynamics)  
  65.40.-b (Thermal properties of crystalline solids)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Corresponding Authors:  Nan Li, Jun Zhang     E-mail:  leen04@bit.edu.cn;zhang@iphy.ac.cn

Cite this article: 

Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青) Theoretical investigation on the H sublattice in CaH6 and energetic performance 2025 Chin. Phys. B 34 086202

[1] Wigner E and Huntington H 1935 The Journal of Chemical Physics 3 764
[2] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[3] Nellis W 1999 Philosophical Magazine B 79 655
[4] Isaac F S and John W C 2010 J. Phys.: Conf. Ser. 215 012194
[5] McMahon J M and Ceperley D M 2011 Phys. Rev. B 84 144515
[6] Dias R P and Silvera I F 2017 Science 355 715
[7] Ashcroft N 2004 Phys. Rev. Lett. 92 187002
[8] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Scientific Reports 4 6968
[9] Drozdov A, Eremets M, Troyan I, Ksenofontov V and Shylin S I 2015 Nature 525 73
[10] Abe K 2017 Phys. Rev. B 96 144108
[11] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[12] Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y and Wang H 2022 Phys. Rev. Lett. 128 167001
[13] Luo Y X, Gao J, Liu Q J, Fan D H and Liu Z T 2024 Journal of Molecular Modeling 30 229
[14] Miao M, Sun Y, Zurek E and Lin H 2020 Nature Reviews Chemistry 4 508
[15] Sun Y and Miao M 2023 Chem 9 443
[16] Tarasov B P, Bocharnikov M S, Yanenko Y B, Fursikov P V, Minko K B and Lototskyy M V 2020 J. Phys.: Energy 2 024005
[17] Wu X L, Xu S, Pang A M, Cao W G, Liu D B, Zhu X Y, Xu F Y and Wang X 2021 Defence Technology 17 1262
[18] Bezdudny A, Blinov D and Dunikov D 2023 Journal of Energy Storage 68 107590
[19] Makhov M 2024 Russian Journal of Physical Chemistry B 18 185
[20] Li Z, He X, Zhang C, Wang X, Zhang S, Jia Y, Feng S, Lu K, Zhao J and Zhang J 2022 Nat. Commun. 13 2863
[21] He X, Zhang C, Li Z, Zhang S, Min B, Zhang J, Lu K, Zhao J, Shi L and Peng Y 2023 Chin. Phys. Lett. 40 057404
[22] He X, Zhang C, Li Z, Lu K, Zhang S, Min B, Zhang J, Shi L, Feng S and Liu Q 2024 Materials Today Physics 40 101298
[23] Banacky P and Noga J 2021 J. Appl. Phys. 130 183902
[24] Hou P, Huo Z and Duan D 2023 The Journal of Physical Chemistry C 127 23980
[25] Denchfield A, Park H and Hemley R J 2024 Proc. Natl. Acad. Sci. USA 121 e2413096121
[26] Sun Y, Zhong X, Liu H and Ma Y 2024 National Science Review 11 nwad270
[27] Kresse G and Furthmuller J 1996 Computational Materials Science 6 15
[28] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[29] Blochl P E 1994 Phys. Rev. B 50 17953
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C and Sutton A P 1998 Phys. Rev. B 57 1505
[32] Solovyev I V, Dederichs P H and Anisimov V I 1994 Phys. Rev. B 50 16861
[33] Grimme S, Antony J, Ehrlich S and Krieg H 2010 The Journal of Chemical Physics 132 154104
[34] Momma K and Izumi F 2011 Journal of Applied Crystallography 44 1272
[35] Maintz S, Deringer V L, Tchougreeff A L and Dronskowski R 2016 Journal of Computational Chemistry 37 1030
[36] Kamlet M J and Jacobs S 1968 The Journal of Chemical Physics 48 23
[37] Hutter J, Iannuzzi M, Schiffmann F and VandeVondele J 2014 Wiley Interdisciplinary Reviews: Computational Molecular Science 4 15
[38] VandeVondele J and Hutter J 2003 The Journal of Chemical Physics 118 4365
[39] Zhao D, Liu S, Rong C, Zhong A and Liu S 2018 ACS Omega 3 17986
[40] VandeVondele J and Hutter J 2007 The Journal of Chemical Physics 127 114105
[41] Chesnut D B 2000 The Journal of Physical Chemistry A 104 11644
[42] Dronskowski R and Blochl P E 1993 The Journal of Physical Chemistry 97 8617
[43] Deringer V L, Tchougreeff A L and Dronskowski R 2011 The Journal of Physical Chemistry A 115 5461
[44] Ashcroft N W, Mermin N D and Rodriguez S 1978 American Journal of Physics 46 116
[45] Robertson R 1921 Journal of the Chemical Society, Transactions 119 1
[46] Meyer R, Kohler J and Homburg A 2016 Explosives 7th Ed. (Weinheim: Wiley-VCH)
[47] Politzer P and Murray J S 2011 Central European Journal of Energetic Materials 8 209
[48] Simpson R, Urtiew P, Ornellas D, Moody G, Scribner K and Hoffman D 1997 Propellants, Explosives, Pyrotechnics 22 249
[49] Muravyev N V, Monogarov K A, Melnikov I N, Pivkina A N and Kiselev V G 2021 Physical Chemistry Chemical Physics 23 15522
[50] Yin K, Wang Y, Liu H, Peng F and Zhang L 2015 Journal of Materials Chemistry A 3 4188
[51] Huang B,Wang B,Wu S, Guogan F, HuWand Frapper G 2021 Chemistry of Materials 33 5298
[52] He S, Zhang L, Heng S, Liu Z and Shi Z 2007 Energetic Materials 15 515
[53] Liu D, Chen J, Yang R, Xiao L, Zhang G, Feng X, Zhang K, Jiang W and Hao G 2024 Chemistry of Materials 36 3496
[54] Klapotke T M 2018 Energetic Materials Encyclopedia (Berlin: De Gruyter)
[1] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[2] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[3] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[4] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[5] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[6] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[7] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[8] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[9] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[10] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[11] Pressure dependent excited state dynamics behavior in CzCNDSB
Guang-Jing Hou(侯广静), Ting-Ting Wang(王亭亭), Cun-Fang Feng(冯存方), Hong-Yu Tu(屠宏宇), Yu Zhang(张宇), Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), Ping Lu(路萍), Tian Cui(崔田), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2025, 34(8): 087801.
[12] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[13] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
[14] Magnetotransport properties of two-dimensional tellurium at high pressure
Huiyuan Guo(郭慧圆), Jialiang Jiang(姜家梁), Boyu Zou(邹博宇), Jie Cui(崔杰), Qinglin Wang(王庆林), Haiwa Zhang(张海娃), Guangyu Wang(王光宇), Guozhao Zhang(张国召), Kai Wang(王凯), Yinwei Li(李印威), and Cailong Liu(刘才龙). Chin. Phys. B, 2025, 34(8): 087301.
[15] High pressure synthesis, crystal structure and electronic properties of Ba3Hf(Se1-xTex)5 (x = 0-1)
Zelong Wang(王泽龙), Guodong Wang(王国东), Wenmin Li(李文敏), Runteng Chen(陈润滕), Lei Duan(段磊), Jianfa Zhao(赵建发), Zheng Deng(邓正), Jianfeng Zhang(张建丰), Tingjiang Yan(颜廷江), Jun Zhang(张俊), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086101.
No Suggested Reading articles found!