Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070304    DOI: 10.1088/1674-1056/addd83
Special Issue: Featured Column — COMPUTATIONAL PROGRAMS FOR PHYSICS
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz

Xiao-Hui Ni(倪晓慧)1,2, Ling-Xiao Li(李凌霄)1, Yan-Qi Song(宋燕琪)3, Zheng-Ping Jin(金正平)1,2, Su-Juan Qin(秦素娟)1,2,†, and Fei Gao(高飞)1,2,‡
1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 China Academy of Information and Communications Technology, Beijing 100191, China
Abstract  The quantum alternating operator ansatz algorithm (QAOA+) is widely used for constrained combinatorial optimization problems (CCOPs) due to its ability to construct feasible solution spaces. In this paper, we propose a progressive quantum algorithm (PQA) to reduce qubit requirements for QAOA+ in solving the maximum independent set (MIS) problem. PQA iteratively constructs a subgraph likely to include the MIS solution of the original graph and solves the problem on it to approximate the global solution. Specifically, PQA starts with a small-scale subgraph and progressively expands its graph size utilizing heuristic expansion strategies. After each expansion, PQA solves the MIS problem on the newly generated subgraph using QAOA+. In each run, PQA repeats the expansion and solving process until a predefined stopping condition is reached. Simulation results show that PQA achieves an approximation ratio of 0.95 using only $5.57%$ ($2.17%$) of the qubits and $17.59%$ ($6.43%$) of the runtime compared with directly solving the original problem with QAOA+ on Erdös-Rényi (3-regular) graphs, highlighting the efficiency and scalability of PQA.
Keywords:  quantum alternating operator ansatz algorithm (QAOA+)      constrained combinatorial optimization problems (CCOPs)      maximum independent set (MIS)      feasible space  
Received:  21 April 2025      Revised:  27 May 2025      Accepted manuscript online:  28 May 2025
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: We thank the Tianyan Quantum Computing Program. This work is supported by the National Natural Science Foundation of China (Grant Nos. 62371069, 62372048, and 62272056) and BUPT Excellent Ph.D. Students Foundation (Grant No. CX2023123).
Corresponding Authors:  Su-Juan Qin, Fei Gao     E-mail:  qsujuan@bupt.edu.cn;gaof@bupt.edu.cn

Cite this article: 

Xiao-Hui Ni(倪晓慧), Ling-Xiao Li(李凌霄), Yan-Qi Song(宋燕琪), Zheng-Ping Jin(金正平), Su-Juan Qin(秦素娟), and Fei Gao(高飞) Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz 2025 Chin. Phys. B 34 070304

[1] Grover L K 1997 Phys. Rev. Lett. 79 325
[2] Shor P W 1999 SIAM Rev. 41 303
[3] Harrow A W, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502
[4] Preskill J 2018 Quantum 2 79
[5] Grimsley H R, Economou S E, Barnes E and Mayhall N J 2019 Nat. Commun. 10 3007
[6] Tang H L, Shkolnikov V O, Barron G S, Grimsley H R, Mayhall N J, Barnes E and Economou S E 2021 PRX Quantum 2 020310
[7] Du Y X, Huang T, You S, Hsieh M H and Tao D C 2022 npj Quantum Inf. 8 62
[8] Wu S Y, Song Y Q, Li R Z, Qin S J, Wen Q Y and Gao F 2025 Adv. Quantum Technol. 2400484
[9] Song Y Q,Wu Y S,Wu S Y, Li D D,Wen Q Y, Qin S J and Gao F 2024 Sci. China Phys. Mech. Astron. 67 250311
[10] Farhi E, Goldstone J and Gutmann S 2014 arXiv:1411.4028 [quant-ph]
[11] Bravyi S, Kliesch A, Koenig R and Tang E 2020 Phys. Rev. Lett. 125 260505
[12] Streif M and Leib M 2020 Quantum Sci. Technol. 5 034008
[13] Zhu L H, Tang H L, Barron G S, Calderon-Vargas F A, Mayhall N J, Barnes E and Economou S E 2022 Phys. Rev. Res. 4 033029
[14] Zhou Z Q, Du Y X, Tian X M and Tao D C 2023 Phys. Rev. Appl. 19 024027
[15] Cook J, Eidenbenz S and Bärtschi A 2020 Proceedings of the International Conference on Quantum Computing and Engineering, October 12-16, 2020, Denver, CO, USA, pp. 83-92
[16] Vikstål P, Grönkvist M, Svensson M, Andersson M, Johansson G and Ferrini G 2020 Phys. Rev. Appl. 14 034009
[17] Zhou L, Wang S T, Choi S, Pichler H and Lukin M D 2020 Phys. Rev. X 10 021067
[18] Brandhofer S, Braun D, Dehn V, Hellstern G, Hüls M, Ji Y J, Polian I, Bhatia A S and Wellens T 2022 Quantum Inf. Process. 22 25
[19] Tomesh T, Saleem Z H, Perlin M A, Gokhale P, Suchara M and Martonosi M 2023 Proceedings of the International Conference on Quantum Computing and Engineering, September 17-22, 2023, Bellevue, WA, USA, pp. 1-12
[20] Ni X H, Cai B B, Liu H L, Qin S J, Gao F and Wen Q Y 2024 Adv. Quantum Technol. 7 2300419
[21] Zhang Y J, Mu X D, Liu X W, Wang X Y, Zhang X, Li K, Wu T Y, Zhao D and Dong C 2022 Appl. Soft Comput. 118 108554
[22] Finžgar J R, Kerschbaumer A, Schuetz M J A, Mendl C B and Katzgraber H G 2024 PRX Quantum 5 020327
[23] Lucas A 2014 Front. Phys. 2 5
[24] Ruan Y, Yuan Z Q, Xue X L and Liu Z H 2023 Inf. Sci. 619 98
[25] Hadfield S, Wang Z H, O Gorman B, Rieffel E G, Venturelli D and Biswas R 2019 Algorithms 12 34
[26] Hadfield S, Wang Z H, Rieffel E G, O’Gorman B, Venturelli D and Biswas R 2017 Proceedings of the Second International Workshop on Post Moores Era Supercomputing, November 12-17, 2017, Denver, CO, USA pp. 15-21
[27] Wang Z H, Rubin N C, Dominy J M and Rieffel E G 2020 Phys. Rev. A 101 012320
[28] He Z C, Shaydulin R, Chakrabarti S, Herman D, Li C H, Sun Y and Pistoia M 2023 npj Quantum Inf. 9 121
[29] Brady L T and Hadfield S 2024 Phys. Rev. A 110 052435
[30] Wang S S, Liu H L, Song Y Q, Gao F, Qin S J and Wen Q Y 2023 Physica A 626 129089
[31] Moscibroda T and Wattenhofer R 2005 Proceedings of the Twenty- Fourth Annual ACM Symposium on Principles of Distributed Computing, July 17-20, 2005, Las Vegas, NV, USA, pp. 148-157
[32] Eddy D and Kochenderfer M J 2021 J. Spacecr. Rockets 58 1416
[33] Hochbaum D S 1997 Approximation Algorithms for NP-Hard Problems (Boston: PWS Publishing) pp. 94-143
[34] Tomesh T, Saleem Z H and Suchara M 2022 Quantum 6 781
[35] Saleem Z H 2020 Int. J. Quantum Inf. 18 2050011
[36] Li L X, Li J, Song Y Q, Qin S J, Wen Q Y and Gao F 2024 Sci. China Phys. Mech. Astron. 68 210313
[37] Bondy J A and Murty U S R 1976 Graph Theory with Applications (London: Macmillan)
[38] Vale R, Azevedo T M D, Aráujo I C S, Araujo I F and da Silva A J 2024 Trans. Comput.-Aided Des. Integr. Circuits Syst. 43 802
[39] Tomesh T, Allen N, Dilley D and Saleem Z H 2024 Quantum 8 1493
[40] Lyngfelt I and García-Á lvarez L 2025 Phys. Rev. A 111 022418
[41] Shaydulin R, Lotshaw P C, Larson J, Ostrowski J and Humble T S 2023 ACM Trans. Quantum Comput. 4 19
[42] Wurtz J and Lykov D 2021 Phys. Rev. A 104 052419
[43] Brandao F G S L, Broughton M, Farhi E, Gutmann S and Neven H 2018 arXiv:1812.04170 [quant-ph]
[44] Chinnasamy S, Ramachandran M, Amudha M and Ramu K 2022 Recent Trends Manag. Commer. 3 1
[45] Guerreschi G G and Matsuura A Y 2019 Sci. Rep. 9 6903
[1] Bayesian phase difference estimation based on single-photon projective measurement
Xu-Hao Yu(余旭豪), Ying Wei(韦颖), Ran Yang(杨然), Wen-Hui Song(宋文慧), Yingning Miao(缪应宁), Wei Zhou(周唯), Xinhui Li(李新慧), Xiaoqin Gao(高小钦), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2025, 34(7): 070305.
[2] Domain adaptation method inspired by quantum convolutional neural network
Chunhui Wu(武春辉), Junhao Pei(裴骏豪), Yihua Wu(吴逸华), Anqi Zhang(张安琪), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2025, 34(7): 070302.
[3] Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
Zilu Chen(陈子禄), Zhijin Guan(管致锦), Shuxian Zhao(赵书娴), and Xueyun Cheng(程学云). Chin. Phys. B, 2025, 34(5): 050305.
[4] Effect of pseudo-random number on the security of quantum key distribution protocol
Xiao-Liang Yang(杨晓亮), Yu-Qing Li(李毓擎), and Hong-Wei Li(李宏伟). Chin. Phys. B, 2025, 34(2): 020301.
[5] Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Kehan Wang(王柯涵), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(1): 010305.
[6] Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms
Xiangxiang Sun(孙祥祥), Hao-Yue Qi(齐浩月), Pengfei Zhang(张鹏飞), and Wei Zheng(郑炜). Chin. Phys. B, 2024, 33(11): 110304.
[7] Multi-party semi-quantum private comparison protocol of size relation based on two-dimensional Bell states
Bing Wang(王冰), Li-Hua Gong(龚黎华), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2024, 33(11): 110303.
[8] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[9] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[10] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[11] A quantum blind signature scheme based on dense coding for non-entangled states
Ke Xing(邢柯), Ai-Han Yin(殷爱菡), and Yong-Qi Xue(薛勇奇). Chin. Phys. B, 2024, 33(6): 060309.
[12] Quafu-RL: The cloud quantum computers based quantum reinforcement learning
Yu-Xin Jin(靳羽欣), Hong-Ze Xu(许宏泽), Zheng-An Wang(王正安), Wei-Feng Zhuang(庄伟峰), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(曾进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050301.
[13] Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computers
Hong-Ze Xu(许宏泽), Wei-Feng Zhuang(庄伟峰), Zheng-An Wang(王正安), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yu-Xin Jin(靳羽欣), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(增进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050302.
[14] An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure
Kai Wu(吴凯), Rigui Zhou(周日贵), and Jia Luo(罗佳). Chin. Phys. B, 2024, 33(5): 050305.
[15] Quantum generative adversarial networks based on a readout error mitigation method with fault tolerant mechanism
Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), Tao Cheng(程涛), Shuang Wang(王爽), and Xing-Kui Fan(范兴奎). Chin. Phys. B, 2024, 33(4): 040304.
No Suggested Reading articles found!