Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050305    DOI: 10.1088/1674-1056/ad2504
GENERAL Prev   Next  

An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure

Kai Wu(吴凯)1,2, Rigui Zhou(周日贵)1,2,†, and Jia Luo(罗佳)2,3,‡
1 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
2 Research Center of Intelligent Information Processing and Quantum Intelligent Computing, Shanghai 201306, China;
3 School of Mathematics and Computational Science, Shangrao Normal University, Shangrao 334001, China
Abstract  As a part of quantum image processing, quantum image filtering is a crucial technology in the development of quantum computing. Low-pass filtering can effectively achieve anti-aliasing effects on images. Currently, most quantum image filterings are based on classical domains and grayscale images, and there are relatively fewer studies on anti-aliasing in the quantum domain. This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain. It achieves the effect of anti-aliasing filtering on quantum images during the scaling process. First, we use the novel enhanced quantum representation (NEQR) and the improved quantum representation of color images (INCQI) to represent classical images. Since aliasing phenomena are more pronounced when images are scaled down, this paper focuses only on the anti-aliasing effects in the case of reduction. Subsequently, we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image, achieving the anti-aliasing effect. The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size. Finally, the complexity of the circuit is analyzed. Compared to the images experiencing aliasing effects solely due to scaling, applying anti-aliasing filtering to the images results in smoother and clearer outputs. Additionally, the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.
Keywords:  quantum color image processing      anti-aliasing filtering algorithm      quantum multiplier      pyramid model  
Received:  22 November 2023      Revised:  23 January 2024      Accepted manuscript online:  02 February 2024
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62172268 and 62302289) and the Shanghai Science and Technology Project (Grant Nos. 21JC1402800 and 23YF1416200).
Corresponding Authors:  Rigui Zhou,,E-mail:rgzhou@shmtu.edu.cn;Jia Luo,E-mail:luojia2227@163.com     E-mail:  rgzhou@shmtu.edu.cn;luojia2227@163.com

Cite this article: 

Kai Wu(吴凯), Rigui Zhou(周日贵), and Jia Luo(罗佳) An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure 2024 Chin. Phys. B 33 050305

[1] Feynman R P 1982 Int. J. Theor. Phys. 21 467
[2] Deutsch D 1985 Proc. R. Soc. Lond. A 400 97
[3] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, Nov. 20-22, 1994, pp. 124-134
[4] Grover L K 1996 arXiv:quant-ph/9605043
[5] Cong I, Choi S and Lukin M D 2019 Nat. Phys. 15 1273
[6] Li Y, Zhou R G, Xu R, Luo J and Hu W 2020 Quantum Sci. Technol. 5 044003
[7] Henderson M, Shakya S, Pradhan S and Cook T 2020 Quantum Mach. Intell. 2 2
[8] Zhou M G, Cao X Y, Lu Y S, Wang Y, Bao Y, Jia Z Y, Fu Y, Yin H L and Chen Z B 2022 Research 2022 9798679
[9] Zhou M G, Liu Z P, Yin H L, Li C L, Xu T K and Chen Z B 2023 Research 6 0134
[10] Chen G, Chen Q, Long S, Zhu W, Yuan Z and Wu Y 2023 Pattern Anal. Applic. 26 655
[11] Venegas-Andraca S E and Bose S 2003 Proc. SPIE 5105 137
[12] Venegas-Andraca S E and Ball J 2010 Quantum Inf. Process. 9 5
[13] Latorre J I 2005 arXiv:quant-ph/0510031
[14] Le P Q, Dong F and Hirota K 2011 Quantum Inf. Process. 10 63
[15] Zhang Y, Lu K, Gao Y and Wang M 2013 Quantum Inf. Process. 12 2833
[16] Zhang Y, Lu K, Gao Y and Xu K 2013 Quantum Inf. Process. 12 3103
[17] Zhou R G, Yang P L, Liu X A and Ian H 2018 Int. J. Quantum Inform. 16 1850060
[18] Jiang N and Wang L 2015 Quantum Inf. Process. 14 1559
[19] Zhou R, Hu W, Luo G, Liu X and Fan P 2018 Quantum Inf. Process. 17 7
[20] Zhou R G, Hu W, Fan P and Ian H 2017 Sci. Rep. 7 2511
[21] Gao C, Zhou R G and Li X 2023 Chin. Phys. B 32 050303
[22] Zhang Y, Lu K, Xu K, Gao Y and Wilson R 2015 Quantum Inf. Process. 14 1573
[23] Zhang Y, Lu K and Gao Y 2015 Sci. China Inf. Sci. 58 4
[24] Zhou R G, Tan C and Ian H 2017 Int. J. Theor. Phys. 56 1382
[25] Le P Q, Iliyasu A M, Dong F and Hirota K 2011 Theor. Comput. Sci. 412 1406
[26] Le P Q, Dong F and Hirota K 2010 IAENG Int. J. Appl. Math. 40 3
[27] Luo G, Zhou R G, Liu X, Hu W and Luo J 2018 Int. J. Theor. Phys. 57 2447
[28] Jiang N, Dang Y and Wang J 2016 Quantum Inf. Process. 15 3543
[29] Dang Y, Jiang N, Hu H and Zhang W 2017 Quantum Inf. Process. 16 4
[30] Li H S, Qingxin Z, Lan S, Shen C Y, Zhou R and Mo J 2013 Quantum Inf. Process. 12 2269
[31] Caraiman S and Manta V I 2015 Quantum Inf. Process. 14 1693
[32] Zhou R G, Hu W, Fan P and Luo G 2018 Int. J. Quantum Inform. 16 1850021
[33] Zhou R G, Hu W and Fan P 2017 Quantum Inf. Process. 16 9
[34] Yang Y G, Wang Y and Zhao Q Q 2016 Multimedia Systems 22 271
[35] Yang Y G, Jia X, Xu P and Tian J 2013 Quantum Inf. Process. 12 2765
[36] Heidari S and Naseri M 2016 Int. J. Theor. Phys. 55 4205
[37] Zhou R G, Yang P L, Liu X A and Ian H 2018 Int. J. Quantum Inform. 16 1850060
[38] Heidari S and Farzadnia E 2017 Quantum Inf. Process. 16 242
[39] Jiang N and Wang L 2015 Int. J. Theor. Phys. 54 1021
[40] Jiang N, Zhao N and Wang L 2016 Int. J. Theor. Phys. 55 107
[41] Lomont C 2003 arXiv:quant-ph/0309070
[42] Yuan S, Mao X, Zhou J and Wang X 2017 Int. J. Theor. Phys. 56 2495
[43] Yuan S, Lu Y, Mao X, Luo Y and Yuan J 2018 Int. J. Theor. Phys. 57 804
[44] Sang J, Wang S and Li Q 2017 Quantum Inf. Process. 16 42
[45] Wang J, Jiang N and Wang L 2015 Quantum Inf. Process. 14 1589
[1] Quantum legitimacy of reversible gate and a new design of multiplier based on R gate
Tingyu Ge(葛庭宇), Tinggui Zhang(张廷桂), Xiaofen Huang(黄晓芬). Chin. Phys. B, 2020, 29(5): 050305.
No Suggested Reading articles found!