CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles |
Yue Ning(宁玥), Yunfeng Lai(赖云锋)†, Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲) |
1 School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China |
|
|
Abstract As an alternative device for neuromorphic computing to conquer von Neumann bottleneck, the memristor serving as an artificial synapse has attracted much attention. The TaOx memristors embedded with silver nanoparticles (Ag NPs) have been fabricated to implement synaptic plasticity and to investigate the effects of Ag NPs. The TaOx memristors with and without Ag NPs are capable of simulating synaptic plasticity (PTP, STDP, and STP to LTP), learning, and memory behaviors. The conduction of the high resistance state (HRS) is driven by Schottky-emission mechanism. The embedment of Ag NPs causes the low resistance state (LRS) conduction governed by a Poole-Frenkel emission mechanism instead of a space-charge-limited conduction (SCLC) in a pure TaOx system, which is ascribed to the Ag NPs enhancing electric field to produce additional traps and to reduce Coulomb potential energy of bound electrons to assist electron transport. Consequently, the enhanced electric fields induced by Ag NPs increase the learning strength and learning speed of the synapses. Additionally, they also improve synaptic sensitivity to stimuli. The linearity of conductance modulation and the reproducibility of conductance are improved as well.
|
Received: 28 September 2020
Revised: 12 November 2020
Accepted manuscript online: 23 November 2020
|
PACS:
|
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
77.80.Fm
|
(Switching phenomena)
|
|
87.19.lg
|
(Synapses: chemical and electrical (gap junctions))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61674038), the Natural Science Foundation of Fujian Province, China (Grant No. 2019J01218), the Fund from the Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZR145), and the Science Fund from the Fujian Provincial Department of Industry and Information Technology of China (Grant No. 82318075). |
Corresponding Authors:
†Corresponding author. E-mail: Yunfeng.lai@fzu.edu.cn
|
Cite this article:
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲) Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles 2021 Chin. Phys. B 30 047301
|
1 Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R, Taba B, Amir A, Flickner M D, Risk W P, Manohar R and Modha D S 2014 Science 345 668 2 Zhou L, Mao J Y, Ren Y, Yang J Q, Zhang S R, Zhou Y, Liao Q F, Zeng Y J, Shan H Q, Xu Z X, Fu J J, Wang Y, Chen X L, Lv Z Y, Han S T and Roy V A L 2018 Small 14 1800288 3 Chandrasekaran S, Simanjuntak F M, Saminathan R, Panda D and Tseng T Y 2019 Nanotechnology 30 445205 4 Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X and Miao X 2014 Sci. Rep. 4 4906 5 Wan Q Z, Sharbati M T, Erickson J R, Du Y H and Xiong F 2019 Adv. Mater. Technol. 4 1900037 6 Wang J R and Zhuge F 2019 Adv. Mater. Technol. 4 1800544 7 Li S Z, Zeng F, Chen C, Liu H Y, Tang G S, Gao S, Song C, Lin Y S, Pan F and Guo D 2013 J. Mater. Chem. C 1 5292 8 Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632 9 Zhu L Q, Wan C J, Guo L Q, Shi Y and Wan Q 2014 Nat. Commun. 5 3158 10 Li E L, Lin W K, Yan Y J, Yang H H, Wang X M, Chen Q Z, Lv D X, Chen G X, Chen H P and Guo T L 2019 ACS Appl. Mater. Interfaces 11 46008 11 Sabatini B L 2007 Nature 450 1173 12 Yu S M, Gao B, Fang Z, Yu H Y, Kang J F and Wong H S P 2013 Adv. Mater. 25 1774 13 Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C and Zhu X J 2012 Adv. Funct. Mater. 22 2759 14 Wang Z R, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barne M, Li G L, Xin H L, Williams R S, Xia Q F and Yang J J 2017 Nat. Mater. 16 101 15 Kim J Y, Garg A, Rymaszewski E J and Lu T M 2001 IEEE Trans. Compon. Packaging Technol. 24 526 16 Chen C, Song C, Yang J, Zeng F and Pan F 2012 Appl. Phys. Lett. 100 253509 17 Ham S, Choi S, Cho H, Na S I and Wang G 2019 Adv. Funct. Mater. 29 1806646 18 Sung C, Lim S, Kim H, Kim T, Moon K, Song J, Kim J J and Hwang H 2018 Nanotechnology 29 115203 19 Wan J D, Qiu W B, Lai Y F, Lin P J, Zheng Q, Yu J L, Cheng S Y and Zhang H Z 2020 J. Phys. D: Appl. Phys. 53 055303 20 Tian J J, Wu H J, Fan Z, Zhang Y, Pennycook S J, Zheng D F, Tan Z W, Guo H Z, Yu P, Lu X B, Zhou G F, Gao X S and Liu J M 2019 Adv. Mater. 31 1903679 21 Fan Z, Fan H, Yang L, Li P L, Lu Z X, Tian G, Huang Z F, Li Z W, Yao J X, Luo Q Y, Chen C, Chen D Y, Yan Z B, Zeng M, Lu X B, Gao X S and Liu J M 2017 J. Mater. Chem. C 5 7317 22 Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 578168 23 Lai Y F, Chen F, Zeng Z C, Lin P J, Cheng S Y and Yu J L 2017 Chin. Phys. B 26 087305 24 Lai Y F, Zeng Z C, Liao C H, Cheng S Y, Yu J L, Zheng Q and Lin P J 2016 Appl. Phys. Lett. 109 063501 25 Gogurla N, Mondal S P, Sinha A K, Katiyar A K, Banerjee W, Kundu S C and Ray S K 2013 Nanotechnology 24 345202 26 Son D I, Park D H, Kim J B, Choi J W, Kim T W, Angadi B, Yi Y and Choi W K 2011 J. Phys. Chem. C 115 2341 27 Khurana G, Misra P, Kumar N, Kooriyattil S, Scott J F and Katiyar R S 2016 Nanotechnology 27 015702 28 Chiu F C2014 Adv. Mater. Sci. Eng. 2014 578168 29 Liu Q, Guan W H, Long S B, Jia R, Liu M and Chen J N 2008 Appl. Phys. Lett. 92 012117 30 Shvets V A, Aliev V S, Gritsenko D V, Shaimeev S S, Fedosenko E V, Rykhlitski S V, Atuchin V V, Gritsenko V A, Tapilin V M and Wong H 2008 J. Non-Cryst. Solids 354 3025 31 Gao L W, Li Y H, Li Q, Song Z X and Ma F 2017 Nanotechnology 28 215201 32 Upadhyay N K, Joshi S and Yang J J 2016 Sci. China-Inf. Sci. 59 061404 33 Tang J S, Yuan F, Shen X K, Wang Z R, Rao M Y, He Y Y, Sun Y H, Li X Y, Zhang W B, Li Y J, Gao B, Qian H, Bi G Q, Song S, Yang J J and Wu H Q 2019 Adv. Mater. 31 1902761 34 Lynch M A 2004 Physiol. Rev. 84 87 35 Bao J X, Kandel E R and Hawkins R D 1997 Science 275 969 36 Froemke R C and Dan Y 2002 Nature 416 433 37 Chang T, Jo S H and Lu W 2011 Acs Nano 5 7669 38 Ebbinghaus H 2013 Ann. Neurosci. 20 155 39 Wang Z W, Yin M H, Zhang T, Cai Y M, Wang Y Y, Yang Y C and Huang R 2016 Nanoscale 8 14015 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|