Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047301    DOI: 10.1088/1674-1056/abccb8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles

Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲)
1 School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
Abstract  As an alternative device for neuromorphic computing to conquer von Neumann bottleneck, the memristor serving as an artificial synapse has attracted much attention. The TaOx memristors embedded with silver nanoparticles (Ag NPs) have been fabricated to implement synaptic plasticity and to investigate the effects of Ag NPs. The TaOx memristors with and without Ag NPs are capable of simulating synaptic plasticity (PTP, STDP, and STP to LTP), learning, and memory behaviors. The conduction of the high resistance state (HRS) is driven by Schottky-emission mechanism. The embedment of Ag NPs causes the low resistance state (LRS) conduction governed by a Poole-Frenkel emission mechanism instead of a space-charge-limited conduction (SCLC) in a pure TaOx system, which is ascribed to the Ag NPs enhancing electric field to produce additional traps and to reduce Coulomb potential energy of bound electrons to assist electron transport. Consequently, the enhanced electric fields induced by Ag NPs increase the learning strength and learning speed of the synapses. Additionally, they also improve synaptic sensitivity to stimuli. The linearity of conductance modulation and the reproducibility of conductance are improved as well.
Keywords:  resistive switching      synaptic plasticity      memristor  
Received:  28 September 2020      Revised:  12 November 2020      Accepted manuscript online:  23 November 2020
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  77.80.Fm (Switching phenomena)  
  87.19.lg (Synapses: chemical and electrical (gap junctions))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61674038), the Natural Science Foundation of Fujian Province, China (Grant No. 2019J01218), the Fund from the Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZR145), and the Science Fund from the Fujian Provincial Department of Industry and Information Technology of China (Grant No. 82318075).
Corresponding Authors:  Corresponding author. E-mail: Yunfeng.lai@fzu.edu.cn   

Cite this article: 

Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲) Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles 2021 Chin. Phys. B 30 047301

1 Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R, Taba B, Amir A, Flickner M D, Risk W P, Manohar R and Modha D S 2014 Science 345 668
2 Zhou L, Mao J Y, Ren Y, Yang J Q, Zhang S R, Zhou Y, Liao Q F, Zeng Y J, Shan H Q, Xu Z X, Fu J J, Wang Y, Chen X L, Lv Z Y, Han S T and Roy V A L 2018 Small 14 1800288
3 Chandrasekaran S, Simanjuntak F M, Saminathan R, Panda D and Tseng T Y 2019 Nanotechnology 30 445205
4 Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X and Miao X 2014 Sci. Rep. 4 4906
5 Wan Q Z, Sharbati M T, Erickson J R, Du Y H and Xiong F 2019 Adv. Mater. Technol. 4 1900037
6 Wang J R and Zhuge F 2019 Adv. Mater. Technol. 4 1800544
7 Li S Z, Zeng F, Chen C, Liu H Y, Tang G S, Gao S, Song C, Lin Y S, Pan F and Guo D 2013 J. Mater. Chem. C 1 5292
8 Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
9 Zhu L Q, Wan C J, Guo L Q, Shi Y and Wan Q 2014 Nat. Commun. 5 3158
10 Li E L, Lin W K, Yan Y J, Yang H H, Wang X M, Chen Q Z, Lv D X, Chen G X, Chen H P and Guo T L 2019 ACS Appl. Mater. Interfaces 11 46008
11 Sabatini B L 2007 Nature 450 1173
12 Yu S M, Gao B, Fang Z, Yu H Y, Kang J F and Wong H S P 2013 Adv. Mater. 25 1774
13 Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C and Zhu X J 2012 Adv. Funct. Mater. 22 2759
14 Wang Z R, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barne M, Li G L, Xin H L, Williams R S, Xia Q F and Yang J J 2017 Nat. Mater. 16 101
15 Kim J Y, Garg A, Rymaszewski E J and Lu T M 2001 IEEE Trans. Compon. Packaging Technol. 24 526
16 Chen C, Song C, Yang J, Zeng F and Pan F 2012 Appl. Phys. Lett. 100 253509
17 Ham S, Choi S, Cho H, Na S I and Wang G 2019 Adv. Funct. Mater. 29 1806646
18 Sung C, Lim S, Kim H, Kim T, Moon K, Song J, Kim J J and Hwang H 2018 Nanotechnology 29 115203
19 Wan J D, Qiu W B, Lai Y F, Lin P J, Zheng Q, Yu J L, Cheng S Y and Zhang H Z 2020 J. Phys. D: Appl. Phys. 53 055303
20 Tian J J, Wu H J, Fan Z, Zhang Y, Pennycook S J, Zheng D F, Tan Z W, Guo H Z, Yu P, Lu X B, Zhou G F, Gao X S and Liu J M 2019 Adv. Mater. 31 1903679
21 Fan Z, Fan H, Yang L, Li P L, Lu Z X, Tian G, Huang Z F, Li Z W, Yao J X, Luo Q Y, Chen C, Chen D Y, Yan Z B, Zeng M, Lu X B, Gao X S and Liu J M 2017 J. Mater. Chem. C 5 7317
22 Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 578168
23 Lai Y F, Chen F, Zeng Z C, Lin P J, Cheng S Y and Yu J L 2017 Chin. Phys. B 26 087305
24 Lai Y F, Zeng Z C, Liao C H, Cheng S Y, Yu J L, Zheng Q and Lin P J 2016 Appl. Phys. Lett. 109 063501
25 Gogurla N, Mondal S P, Sinha A K, Katiyar A K, Banerjee W, Kundu S C and Ray S K 2013 Nanotechnology 24 345202
26 Son D I, Park D H, Kim J B, Choi J W, Kim T W, Angadi B, Yi Y and Choi W K 2011 J. Phys. Chem. C 115 2341
27 Khurana G, Misra P, Kumar N, Kooriyattil S, Scott J F and Katiyar R S 2016 Nanotechnology 27 015702
28 Chiu F C2014 Adv. Mater. Sci. Eng. 2014 578168
29 Liu Q, Guan W H, Long S B, Jia R, Liu M and Chen J N 2008 Appl. Phys. Lett. 92 012117
30 Shvets V A, Aliev V S, Gritsenko D V, Shaimeev S S, Fedosenko E V, Rykhlitski S V, Atuchin V V, Gritsenko V A, Tapilin V M and Wong H 2008 J. Non-Cryst. Solids 354 3025
31 Gao L W, Li Y H, Li Q, Song Z X and Ma F 2017 Nanotechnology 28 215201
32 Upadhyay N K, Joshi S and Yang J J 2016 Sci. China-Inf. Sci. 59 061404
33 Tang J S, Yuan F, Shen X K, Wang Z R, Rao M Y, He Y Y, Sun Y H, Li X Y, Zhang W B, Li Y J, Gao B, Qian H, Bi G Q, Song S, Yang J J and Wu H Q 2019 Adv. Mater. 31 1902761
34 Lynch M A 2004 Physiol. Rev. 84 87
35 Bao J X, Kandel E R and Hawkins R D 1997 Science 275 969
36 Froemke R C and Dan Y 2002 Nature 416 433
37 Chang T, Jo S H and Lu W 2011 Acs Nano 5 7669
38 Ebbinghaus H 2013 Ann. Neurosci. 20 155
39 Wang Z W, Yin M H, Zhang T, Cai Y M, Wang Y Y, Yang Y C and Huang R 2016 Nanoscale 8 14015
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[4] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[7] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[8] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[9] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[10] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[11] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[12] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[13] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[14] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[15] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
No Suggested Reading articles found!