Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 058101    DOI: 10.1088/1674-1056/ac4481
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials

Fengling Chen(陈峰岭)1,2, Jiannan Lin(林建楠)4, Yifan Chen(陈一帆)4, Binbin Dong(董彬彬)4, Chujun Yin(尹楚君)1,2, Siying Tian(田飔莹)1,2, Dapeng Sun(孙大鹏)1,2, Jing Xie (解婧)1,2, Zhenyu Zhang(张振宇)4,†, Hong Li(李泓)2,3,‡, and Chaobo Li(李超波)1,2,§
1 Institute of Microelectronics, Chinese Academy of Sciences, Beiing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Beijing Welion New Energy Technology Co., Ltd, Beijing 102402, China
Abstract  Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improved energy density. However, low structural stability and rapid capacity decay at high voltage and temperature hinder their rapid large-scale application. Herein, a wet chemical method followed by a post-annealing process is utilized to realize the surface coating of tantalum oxide on LiNi0.88Mn0.03Co0.09O2, and the electrochemical performance is improved. The modified LiNi0.88Mn0.03Co0.09O2 displays an initial discharge capacity of ~ 233 mAh/g at 0.1 C and 174 mAh/g at 1 C after 150 cycles in the voltage range of 3.0 V-4.4 V at 45℃, and it also exhibits an enhanced rate capability with 118 mAh/g at 5 C. The excellent performance is due to the introduction of tantalum oxide as a stable and functional layer to protect the surface of LiNi0.88Mn0.03Co0.09O2, and the surface side reactions and cation mixing are suppressed at the same time without hampering the charge transfer kinetics.
Keywords:  LiNi0.88Mn0.03Co0.09O2      tantalum oxide      surface coating      lithium-ion battery      cathode material  
Received:  20 November 2021      Revised:  13 December 2021      Accepted manuscript online: 
PACS:  81.65.-b (Surface treatments)  
  81.40.Np (Fatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  47.20.Hw (Morphological instability; phase changes)  
Fund: Project supported by the Key Laboratory Fund (Grant No.6142804200303) from Science and Technology on Microsystem Laboratory,the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences:Original Innovation Projects from 0 to 1(Grant No.ZDBS-LY-JSC010),the Key Research and Development Project of the Department of Science and Technology of Jiangsu Province,China (Grant No.BE2020003),the Beijing Municipal Science and Technology Commission (Grant No.Z191100004719001),and the National Key Research and Development Program of China (Grant No.2017YFB0405400).
Corresponding Authors:  Zhenyu Zhang,E-mail:zyzhang@solidstatelion.com;Hong Li,E-mail:hli@iphy.ac.cn;Chaobo Li,E-mail:lichaobo@ime.ac.cn     E-mail:  zyzhang@solidstatelion.com;hli@iphy.ac.cn;lichaobo@ime.ac.cn
About author:  2021-12-18

Cite this article: 

Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波) Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials 2022 Chin. Phys. B 31 058101

[1] Kim T H, Park J S, Chang S K, Choi S, Ryu J H and Song H K 2012 Adv. Energy Mater. 2 860
[2] Manthiram A 2020 Nat. Commun. 11 1550
[3] Schmuch R, Wagner R, H?rpel G, Placke T and Winter M 2018 Nat. Energy 3 267
[4] Andre D, Kim S J, Lamp P, Lux S F, Maglia F and Paschos O 2015 J. Mater. Chem. A 3 6709
[5] Wang X, Wang B, Yang J, Ran Q, Zou J, Chen P, Li L, Wang L and Niu X 2021 Chin. Phys. B 30 88201
[6] Zhang J, Li Q, Li Q, Yu X and Li H 2018 Chin. Phys. B 27 88202
[7] Yi Wang, Bo Liu, Ge Zhou, Kai Nie, Jie Zhang, Xi Yu and Hong Li 2019 Chin. Phys. B 28 68202
[8] Shang T, Xiao D, Zhang Q, Wang X, Su D and Gu L 2021 Chin. Phys. B 30 78202
[9] Liu W, Oh P, Liu X, Lee M J, Cho W and Chae S J 2015 Angew. Chem. Int. Ed. 54 4440
[10] Ohzuku T, Ueda A and Nagayama M 1993 J. Electrochem. Soc. 140 1862
[11] Zhao J Q, Zhang W, Huq A, Misture S T, Zhang B L and Guo S M 2017 Adv. Energy Mater. 7 1601266
[12] Yan W W, Yang S Y, Huang Y Y, Yang Y and Guohui Y 2020 J. Alloys Compd. 819 153048
[13] Zheng J X, Teng G F, Xin C, Zhuo Z Q, Liu J J and Li Q H 2017 J. Phys. Chem. Lett. 8 5537
[14] Li M and Lu J 2020 Science 367 979
[15] Maleki Kheimeh Sari H and Li X F 2019 Adv. Energy Mater. 9 1901597
[16] Kim J, Lee J, Ma H S, Jeong H Y, Cha H Y and Lee H 2018 Adv. Mater. 30 1704309
[17] Sun Y K 2019 ACS Energy Lett. 4 1042
[18] Sun H H, Ryu H H, Kim U-H, Weeks J A, Heller A and Sun Y K 2020 ACS Energy Lett. 5 1136
[19] Lin F, Markus I M, Nordlund D, Weng T C, Asta M D and Xin H L 2014 Nat. Commun. 5 3529
[20] Weigel T, Schipper F, Erickson E M, Susai F A, Markovsky B and Aurbach D 2019 ACS Energy Lett. 4 508
[21] Kim U H, Park G T, Son B K, Nam G W, Liu J and Kuo L Y 2020 Nat. Energy 5 860
[22] Jamil S, Yu R Z, Wang Q, Fasehullah M, Huang Y and Yang Z H 2020 J. Power Sources 473 228597
[23] Luo Y R and Kerr J A 2012 CRC Handbook of Chemistry and Physics (America: Boca Raton) 89 pp. 65-97
[24] Zheng Q and Zhang Y F 2020 Appl. Phys. A 126 104
[25] Gao Y R, Wang X F, Ma J, Wang Z X and Chen L Q 2015 Chem. Mater. 27 3456
[26] Li J L, Yao R M and Cao C B 2014 ACS Appl. Mater. Interfaces 6 5075
[27] Shannon R 1976 Acta Crystallogr. Sec. A 32 751
[28] Xu L P, Zhou F, Zhou H B, Kong J Z, Wang Q Z and Yan G Z 2018 Electrochim. Acta 289 120
[29] Zhang X Y, Mauger A, Lu Q, Groult H, Perrigaud L and Gendron F 2010 Electrochim. Acta 55 6440
[30] Zheng X B, Li X H, Huang Z J, Zhang B, Wang Z X and Guo H J 2015 J. Alloys Compd. 644 607
[31] Lv C J, Yang J, Peng Y, Duan X C, Ma J M and Li Q H 2019 Electrochim. Acta 297 258
[32] Li Y C, Xiang W, Wu Z G, Xu C L, Xu Y D and Xiao Y 2018 Electrochim. Acta 291 84
[33] Husain S, Akansel S, Kumar A, Svedlindh P and Chaudhary S 2016 Sci. Rep. 6 28692
[34] Hellwig M, Milanov A, Barreca D, Deborde J L, Thomas R and Winter M 2007 Chem. Mater. 19 6077
[35] Dias C, Guerra L M, Bordalo B D, Lv H, Ferraria A M and do Rego A M B 2017 Phys. Chem. Chem. Phys. 19 10898
[36] Ryu H H, Park K J, Yoon D R, Aishova A, Yoon C S and Sun Y K 2019 Adv. Energy Mater. 9 1902698
[37] Heist A, Hafner S and Lee S H 2019 J. Electrochem. Soc. 166 A873
[38] Li J, Zhang N, Li H, Liu A, Wang Y and Yin S 2018 J. Electrochem. Soc. 165 A3544
[39] Schipper F, Bouzaglo H, Dixit M, Erickson E, Weigel T and Talianker M 2017 Adv. Energy Mater. 8 1701682
[40] Ryu H H, Park K J, Yoon C S and Sun Y K 2018 Chem. Mater. 30 1155
[41] Zhang X, Zhang P, Zeng T, Yu Z, Qu X and Peng X 2021 ACS Appl. Energy Mater. 4 8641
[42] Zhao W G, Zheng J M, Zou L F, Jia H P, Liu B and Wang H 2018 Adv. Energy Mater. 8 1800297
[43] Im J, Lee J, Ryou M H, Lee Y M and Cho K Y 2017 J. Electrochem. Soc. 164 A6381
[44] Yu X Y, Wang Y M, Cai H, Shang C, Liu Y C and Wang Q 2019 Ionics 25 1447
[45] Yuan H, Song W B, Wang M, Gu Y J and Chen Y B 2019 J. Alloys Compd. 784 1311
[46] Schulz N, Hausbrand R, Wittich C, Dimesso L and Jaegermann W 2018 J. Electrochem. Soc. 165 A833
[47] Li S Y, Zhang W D, Wu Q, Fan L, Wang X Y and Wang X 2020 Angew. Chem. Int. Ed. 59 14935
[48] Huang J L, Du K, Peng Z D, Cao Y B, Xue Z C and Duan J G 2019 ChemElectroChem 6 5428
[49] Xiong X H, Wang Z X, Yin X, Guo H J and Li X H 2013 Mater. Lett. 110 4
[1] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[2] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
[3] Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials
Hao Lu(陆浩), Junyang Wang(汪君洋), Bonan Liu(刘柏男), Geng Chu(褚赓), Ge Zhou(周格), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068201.
[4] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[5] First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries
Feng-Ya Rao(饶凤雅), Fang-Hua Ning(宁芳华), Li-Wei Jiang(蒋礼威), Xiang-Ming Zeng(曾祥明), Mu-Sheng Wu(吴木生), Bo Xu(徐波), Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2016, 25(2): 028202.
[6] Multi-scale computation methods: Their applications in lithium-ion battery research and development
Siqi Shi(施思齐), Jian Gao(高健), Yue Liu(刘悦), Yan Zhao(赵彦), Qu Wu(武曲), Wangwei Ju(琚王伟), Chuying Ouyang(欧阳楚英), Ruijuan Xiao(肖睿娟). Chin. Phys. B, 2016, 25(1): 018212.
[7] Redox-assisted Li+-storage in lithium-ion batteries
Qizhao Huang(黄启昭) and Qing Wang(王庆). Chin. Phys. B, 2016, 25(1): 018213.
[8] Magnetic iron oxide nanoparticles:Synthesis and surface coating techniques for biomedical applications
Sun Sheng-Nan (孙圣男), Wei Chao (魏超), Zhu Zan-Zan (朱赞赞), Hou Yang-Long (侯仰龙), Subbu S Venkatraman, Xu Zhi-Chuan (徐梽川). Chin. Phys. B, 2014, 23(3): 037503.
[9] Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity
Wang Zhen-Po (王震坡), Liu Peng (刘鹏), Wang Li-Fang (王丽芳). Chin. Phys. B, 2013, 22(8): 088801.
[10] Tunable structural color of anodic tantalum oxide films
Sheng Cui-Cui (盛翠翠), Cai Yun-Yu (蔡云雨), Dai En-Mei (代恩梅), Liang Chang-Hao (梁长浩 ). Chin. Phys. B, 2012, 21(8): 088101.
[11] Cation mixing (Li0.5Fe0.5)2SO4F cathode material for lithium-ion batteries
Sun Yang(孙洋), Liu Lei(刘磊), Dong Jin-Ping(董金平), Zhang Bin(张斌), and Huang Xue-Jie(黄学杰). Chin. Phys. B, 2011, 20(12): 126101.
[12] Electrochemical properties of SnO2 nanorods as anode materials in lithium-ion battery
Shi Song-Lin(施松林), Liu Yong-Gang(刘永刚), Zhang Jing-Yuan(张敬源), and Wang Tai-Hong(王太宏). Chin. Phys. B, 2009, 18(10): 4564-4570.
No Suggested Reading articles found!