Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077107    DOI: 10.1088/1674-1056/adc7f0
Special Issue: SPECIAL TOPIC — Recent progress on kagome metals and superconductors
SPECIAL TOPIC — Recent progress on kagome metals and superconductors Prev   Next  

Nontrivial Fermi surface topology in kagome superconductor CsTi3Bi5 revealed by de Haas-van Alphen oscillation

Yuhang Zhang(张宇航)1,2,†,‡, Xinwei Yi(易鑫伟)2,†, Zhen Zhao(赵振)1,2,†, Jiali Liu(刘家利)1,2, Aini Xu(胥艾妮)1,2, Dong Li(李栋)6, Zouyouwei Lu(鲁邹有为)1,2, Yue Liu(刘樾)1,2, Jihu Lu(卢佶虎)1,2, Hua Zhang(张华)1,2, Hui Chen(陈辉)1,2,4, Shiliang Li(李世亮)1,2,3, Ziyi Liu(刘子儀)1, Jinguang Cheng(程金光)1,2, Gang Su(苏刚)2,5,7,§, Haitao Yang(杨海涛)1,2,4,¶, Xiaoli Dong(董晓莉)1,2,3,#, Hong-Jun Gao(高鸿钧)1,2,4, and Zhongxian Zhao(赵忠贤)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
5 Kavli Institute for Theoretical Sciences, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
6 RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan;
7 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The kagome lattice, naturally encompassing Dirac fermions, flat bands, and van Hove singularities, tends to intertwine exotic electronic states. Revealing the characteristics of its Fermi surface will help clarify the nature of the complex quantum phenomena in kagome material. Here we report the Fermi surface properties of the novel kagome metal CsTi$_{{3}}$Bi$_{{5}}$ by the de Haas-van Alphen oscillations. The observed oscillations are clear and consist of six principal frequencies ranging from 214 T to 1013 T. The angular dependence of the frequency implies a quasi-two-dimensional electronic structure. In addition, the geometry phase corresponding to 281 T, determined by direct Lifshitz-Kosevich formula fitting, yields a value close to $\pi $, which may indicate a band structure with nontrivial topological property. These results underscore the potential of CsTi$_{{3}}$Bi$_{{5}}$ as a promising platform to explore the interplay between topological order, electronic nematicity, and superconductivity.
Keywords:  kagome superconductor      quantum oscillation  
Received:  22 January 2025      Revised:  29 March 2025      Accepted manuscript online:  02 April 2025
PACS:  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.25.-q (Properties of superconductors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403903, 2023YFA1406100, 2018YFA0305800, and 2022YFA1204100), the National Natural Science Foundation of China (Grant Nos. 12304075, 11834014, 61888102, and 12447101), Chinese Academy of Sciences (Grant Nos. XDB33010200 and 2022YSBR-048), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000), and the National Science and Technology Major Project (Grant No. 2024ZD0300500).
Corresponding Authors:  Yuhang Zhang, Gang Su, Haitao Yang, Xiaoli Dong     E-mail:  yuhang@iphy.ac.cn;gsu@ucas.ac.cn;htyang@iphy.ac.cn;dong@iphy.ac.cn

Cite this article: 

Yuhang Zhang(张宇航), Xinwei Yi(易鑫伟), Zhen Zhao(赵振), Jiali Liu(刘家利), Aini Xu(胥艾妮), Dong Li(李栋), Zouyouwei Lu(鲁邹有为), Yue Liu(刘樾), Jihu Lu(卢佶虎), Hua Zhang(张华), Hui Chen(陈辉), Shiliang Li(李世亮), Ziyi Liu(刘子儀), Jinguang Cheng(程金光), Gang Su(苏刚), Haitao Yang(杨海涛), Xiaoli Dong(董晓莉), Hong-Jun Gao(高鸿钧), and Zhongxian Zhao(赵忠贤) Nontrivial Fermi surface topology in kagome superconductor CsTi3Bi5 revealed by de Haas-van Alphen oscillation 2025 Chin. Phys. B 34 077107

[1] Syozi I 1951 Prog. Theor. Phys. 6 306
[2] Anderson P W 1973 Mater. Res. Bull. 8 153
[3] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R and Senthil T 2020 Science 367 263
[4] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[5] Ortiz B R, Gomes L C, Morey J R,Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[6] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[7] Chen H, Yang H T, Hu B,et al. 2021 Nature 599 222
[8] Jiang Y X, Yin J X, Denner M M,et al. 2021 Nat. Mater. 20 1353
[9] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026
[10] Wang Z, Ma S, Zhang Y, Yang H, Zhao Z, Ou Y, Zhu Y, Ni S, Lu Z, Chen H, Jiang K, Yu L, Zhang Y, Dong X, Hu J, Gao H J, Zhao Z and Zhao Z 2021 arXiv 2104.05556
[11] Ni S L, Ma S, Zhang Y H, et al. 2021 Chin. Phys. Lett. 38 057403
[12] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[13] Xu H S, Yan Y J, Yin R T, Xia W, Fang S J, Chen Z Y, Li Y J, Yang W Q, Guo Y F and Feng D L 2021 Phys. Rev. Lett. 127 187004
[14] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403
[15] Yang S Y, Wang Y J, Ortiz B R, Liu D F, Gayles J, Derunova E, Gonzalez-Hernandez R, Smejkal L, Chen Y L, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[16] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103
[17] Yu L, Wang C, Zhang Y, et al. 2021 arXiv 2107.10714
[18] Mielke C, Das D, Yin J X, et al. 2022 Nature 602 245
[19] Nie L P, Sun K, Ma W R, et al. 2022 Nature 604 59
[20] Wulferding D, Lee S, Choi Y, Yin Q, Tu Z, Gong C, Lei H, Yousuf S, Song J, Lee H, Park T and Choi K Y 2022 Phys. Rev. Res. 4 023215
[21] Xiang Y, Li Q, Li Y K, Xie W, Yang H, Wang Z W, Yao Y G and Wen H H 2021 Nat. Commun. 12 6727
[22] Yi X W, Ma X Y, Zhang Z, Liao Z W, You J Y and Su G 2022 Phys. Rev. B 106 L220505
[23] Yang H, Ye Y, Zhao Z, et al. 2024 Nat. Commun. 15 9626
[24] Werhahn D, Ortiz B R, Hay A K, Wilson S D, Seshadri R and Johrendt D 2022 Z. Naturforsch. B 77 757
[25] Wang Y, Liu Y, Hao Z, et al. 2023 Chin. Phys. Lett. 40 049901
[26] Chen X, Liu X, Xia W, Mi X, Zhong L, Yang K, Zhang L, Gan Y, Liu Y, Wang G, Wang A, Chai Y, Shen J, Yang X, Guo Y and He M 2023 Phys. Rev. B 107 174510
[27] Liu B, Kuang M Q, Luo Y, et al. 2023 Phys. Rev. Lett. 131 026701
[28] Yang J, Yi X, Zhao Z, et al. 2023 Nat. Commun. 14 4089
[29] Wang Y, Liu Y, Hao Z, et al. 2023 Chin. Phys. Lett. 40 037102
[30] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Seshadri R and Wilson S D 2021 Phys. Rev. X 11 041030
[31] Broyles C, Graf D, Yang H T, Dong X L, Gao H J and Ran S 2022 Phys. Rev. Lett. 129 157001
[32] Shrestha K, Chapai R, Pokharel B K, Miertschin D, Nguyen T, Zhou X, Chung D Y, Kanatzidis M G, Mitchell J F,Welp U, Popović D, Graf D E, Lorenz B and Kwok W K 2022 Phys. Rev. B 105 024508
[33] ZhangW,Wang L, Tsang CW, Liu X, Xie J, YuWC, Lai K T and Goh S K 2022 Phys. Rev. B 106 195103
[34] Fu Y, Zhao N N, Chen Z, Yin Q W, Tu Z J, Gong C S, Xi C Y, Zhu X D, Sun Y P, Liu K and Lei H C 2021 Phys. Rev. Lett. 127 207002
[35] Chapai R, Leroux M, Oliviero V, Vignolles D, Bruyant N, Smylie M P, Chung D Y, Kanatzidis M G, Kwok W K, Mitchell J F and Welp U 2023 Phys. Rev. Lett. 130 126401
[36] Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge Univ. Press)
[37] Alexandradinata A, Wang C, Duan W H and Glazman L 2018 Phys. Rev. X 8 011027
[38] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[39] Narayanan A, Watson M D, Blake S F, Bruyant N, Drigo L, Chen Y L, Prabhakaran D, Yan B, Felser C, Kong T, Canfield P C and Coldea A I 2015 Phys. Rev. Lett. 114 117201
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[44] Rourke P M C and Julian S R 2012 Comput. Phys. Commun. 183 324
[1] Quantum oscillations in TaCo2Te2 thin flakes
Ruiyang Jiang(蒋睿阳), Tian Le(乐天), Yunteng Shi(石云腾), Changcun Li(李长存), Xinyi Zheng(郑新义), Xingchen Guo(郭兴宸), Bingbing Tong(仝冰冰), Peiling Li(李沛岭), Ziwei Dou(窦子威), Xiaohui Song(宋小会), Jie Shen(沈洁), Zhaozheng Lyu(吕昭征), Guangtong Liu(刘广同), Fucai Liu(刘富才), Li Lu(吕力), and Fanming Qu(屈凡明). Chin. Phys. B, 2025, 34(8): 087307.
[2] Observation of a long-range unidirectional charge density wave in kagome superconductor KV3Sb5
Xingwei Shi(石兴伟), Xiao Liu(刘潇), Geng Li(李更), Zhen Zhao(赵振), Haitao Yang(杨海涛), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077101.
[3] Quantum oscillations and nontrivial topology in unfilled skutterudite IrSb3
Yang Yang(杨扬), Xinyao Li(李鑫垚), Feihong Guan(关飞鸿), Majeed Ur Rehman, Wei Ning(宁伟), Xiangde Zhu(朱相德), and Mingliang Tian(田明亮). Chin. Phys. B, 2025, 34(6): 067103.
[4] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[5] Two-fold symmetry of the in-plane resistance in kagome superconductor Cs(V1-xTax)3Sb5 with enhanced superconductivity
Zhen Zhao(赵振), Ruwen Wang(王汝文), Yuhang Zhang(张宇航), Ke Zhu(祝轲), Weiqi Yu(余维琪), Yechao Han(韩烨超), Jiali Liu(刘家利), Guojing Hu(胡国静), Hui Guo(郭辉), Xiao Lin(林晓), Xiaoli Dong(董晓莉), Hui Chen(陈辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077406.
[6] Magnetoresistance hysteresis in the superconducting state of kagome CsV3Sb5
Tian Le(乐天), Jinjin Liu(刘锦锦), Zhiwei Wang(王秩伟), and Xiao Lin(林效). Chin. Phys. B, 2024, 33(10): 107402.
[7] Nonlinear current response and electric quantum oscillations in the Dirac semimetal Cd3As2
Hao-Nan Cui(崔浩楠), Ze-Nan Wu(吴泽南), Jian-Kun Wang(王建坤), Guang-Yu Zhu(祝光宇), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), Ben-Chuan Lin(林本川), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2023, 32(8): 087306.
[8] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[9] Evolution of superconductivity and charge order in pressurized RbV3Sb5
Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球). Chin. Phys. B, 2022, 31(1): 017404.
[10] Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(1): 017405.
[11] Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony
Fangdong Tang(汤方栋), Qianheng Du(杜乾衡), Cedomir Petrovic, Wei Zhang(张威), Mingquan He(何明全), Liyuan Zhang(张立源). Chin. Phys. B, 2019, 28(3): 037104.
[12] Quantum oscillation measurements in high magnetic field and ultra-low temperature
Pu Wang(王瀑), Gang Li(李岗), Jian-Lin Luo(雒建林). Chin. Phys. B, 2018, 27(7): 077101.
[13] Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3
Minhao Zhang(张敏昊), Yan Li(李焱), Fengqi Song(宋凤麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(12): 127305.
[14] Magnetic quantum oscillations in a monolayer graphene under a perpendicular magnetic field
Fu Zhen-Guo(付振国), Wang Zhi-Gang(王志刚), Li Shu-Shen(李树深), and Zhang Ping(张平). Chin. Phys. B, 2011, 20(5): 058103.
No Suggested Reading articles found!