| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High-power ~ 4.1 μm quantum cascade lasers grown by metal-organic chemical vapor deposition |
| Chao Wang(王超)1,†, Chenhao Qian(钱晨灏)1, Yang Cheng(程洋)4,5, Junpu Wang(王俊普)4, Xiaoyue Luo(罗晓玥)2, Yuhang Zhang(章宇航)3, Wu Zhao(赵武)5, Fangyuan Sun(孙方圆)2,5, and Jun Wang(王俊)2,4,5,‡ |
1 Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian 201800, China; 2 College of Electronic Information, Sichuan University, Chengdu 610041, China; 3 Southeast University-Monash University Joint Graduate School (Suzhou), Southeast University, Suzhou 215125, China; 4 National University of Defense Technology, Changsha 410073, China; 5 Suzhou Everbright Photonics Co., Ltd., Suzhou 215009, China |
|
|
|
|
Abstract The authors report the development of a $\lambda \sim 4.1$ μm quantum cascade laser grown by metal-organic chemical vapor deposition using strain-balanced InGaAs/InAlAs materials. A device with a 7.5 mm cavity length and 6.5 μm ridge width, bonded to an aluminum nitride heatsink, achieves maximum output powers of 3.4 W at 288 K in pulsed mode and 1.6 W at 288 K in continuous-wave (CW) operation, with corresponding maximum wall-plug efficiencies of 14.8% and 9.3%. A kink is observed in the power-current curve under CW operation, which is absent in pulsed operation. Near-field results show that in CW operation, the horizontal beam quality factor $M^{2}$ fluctuates with current, indicating mode instability and high-order lateral mode excitation, while in pulsed mode, the horizontal $M^{2}$ remains stable around 1.3 as the current increases from 1.4 A to 1.9 A.
|
Received: 21 January 2025
Revised: 11 April 2025
Accepted manuscript online: 17 April 2025
|
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
| |
42.60.Pk
|
(Continuous operation)
|
| |
95.85.Hp
|
(Infrared (3-10 μm))
|
|
Corresponding Authors:
Chao Wang, Jun Wang
E-mail: chaowang@hyit.edu.cn;wjdz@scu.edu.cn
|
Cite this article:
Chao Wang(王超), Chenhao Qian(钱晨灏), Yang Cheng(程洋), Junpu Wang(王俊普), Xiaoyue Luo(罗晓玥), Yuhang Zhang(章宇航), Wu Zhao(赵武), Fangyuan Sun(孙方圆), and Jun Wang(王俊) High-power ~ 4.1 μm quantum cascade lasers grown by metal-organic chemical vapor deposition 2025 Chin. Phys. B 34 074204
|
[1] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553 [2] Faist J, Capasso F, Sirtori C, Sivco D L, Baillargeon J N, Hutchinson A L, Chu S N G and Cho A Y 1996 Appl. Phys. Lett. 68 3680 [3] Faist J, Capasso F, Sivco D L, Hutchinson A L, Chu S N G and Cho A Y 1998 Appl. Phys. Lett. 72 680 [4] Beck M, Hofstetter D, Aellen T, Faist J, Oesterle U, Ilegems M, Gini E and Melchior H 2002 Science 295 301 [5] Evans A, Darvish S R, Slivken S, Nguyen J, Bai Y and Razeghi M 2007 Appl. Phys. Lett. 91 071101 [6] Bai Y, Darvish S R, Slivken S, Zhang W, Evans A, Nguyen J and Razeghi M 2008 Appl. Phys. Lett. 92 101105 [7] Lyakh A, Maulini R, Tsekoun A, Go R, Pflügl C, Diehl L, Wang Q J, Capasso F and Patel C K N 2009 Appl. Phys. Lett. 95 141113 [8] Yu J S, Darvish S R, Evans A, Nguyen J, Silvken S and Razeghi M 2006 Appl. Phys. Lett. 88 041111 [9] Lyakh A, Maulini R, Tsekoun A, Go R, Porten S V, Pflügl C, Diehl L, Capasso F and Patel C K N 2010 Proc. Natl. Acad. Sci. USA 107 18799 [10] Lyakh A, Maulini R, Tsekoun A G, Go R and Patel C K N 2011 Novel In-Plane Semiconductor Lasers X 7953 347 [11] Wang F, Slivken S, Wu D H, Lu Q Y and Razeghi M 2020 Aip. Adv 10 055120 [12] Patel C K N, Troccoli M and Barron-Jimenez R 2019 Technologies for Optical Countermeasures XVI 11161 1116102 [13] Roberts J S, Green R P, Wilson L R, Zibik E A, Revin D G, Cockburn J W and Airey R J 2003 Appl. Phys. Lett. 82 4221 [14] Lyakh A, Pflügl C, Diehl L, Wang Q J, Capasso F, Wang X J, Fan J Y, Tanbun-Ek T, Maulini R, Tsekoun A, Go R and Patel C K N 2008 Appl. Phys. Lett. 92 111110 [15] Troccoli M, Lyakh A, Fan J Y,Wang X J, Maulini R, Tsekoun A, Go R and Patel C K N 2013 Opt. Mater. Express 3 1546 [16] Xie F, Caneau C, Leblanc H P, Caffey D P, Hughes L C, Day T and Zah C 2013 IEEE. J. Sel. Top. Quantum 19 1200407 [17] Xie F, Caneau C G, LeBlanc H P, Ho M, Wang J, Chaparala S, Hughes L C and Zah C 2014 Appl. Phys. Lett. 104 071109 [18] Schwarz B,Wang C A, Missaggia L, Mansuripur T S, Chevalier P, Connors M K, McNulty D, Cederberg J, Strasser G and Capasso F 2017 ACS Photonics 4 1225 [19] Wang C A, Schwarz B, Siriani D F, Missaggia L J, Connors M K, Mansuripur T S, Calawa D R, McNulty D, Nickerson M, Donnelly J P, Creedon K and Capasso F 2017 IEEE. J. Sel. Top. Quantum 23 1 [20] Fei T, Zhai S Q, Zhang J C, Zhuo N, Liu J Q, Wang L J, Liu S M, Jia Z W, Li K, Sun Y Q, Guo K, Liu F Q and Wang Z G 2021 J. Semicond. 42 112301 [21] Sun Y Q, Yin R, Zhang J C, Liu J Q, Fei T, Li K, Guo K, Jia Z W, Liu S M, Lu Q Y, Zhuo N, Wang L J, Liu F Q and Zhai S Q 2022 Opt. Express 30 37272 [22] Botez D, Kirch J D, Boyle C, Oresick K M, Sigler C, Kim H, Knipfer B B, Ryu J H, Lindberg D, Earles T, Mawst L J and Flores Y V 2018 Opt. Mater. Express 8 1378 [23] Fei T, Zhai S Q, Zhang J C, Lu Q Y, Zhuo N, Liu J Q, Wang L J, Liu S M, Jia Z W, Li K, Sun Y Q, Guo K and Liu F Q 2023 Photonics 10 47 [24] Xie F, Caneau C, LeBlanc H P, Visovsky N J, Chaparala S C, Deichmann O D, Hughes L C, Zah C, Caffey D P and Day T 2011 IEEE. J. Sel. Top. Quantum 17 1445 [25] Lyakh A, Suttinger M, Go R, Figueiredo P and Todi A 2016 Appl. Phys. Lett. 109 121109 [26] Wójcik A K, Yu N, Capasso F and Belyanin A 2011 J. Mod. Opt. 58 727 [27] Bewley W W, Lindle J R, Kim C S, Vurgaftman I, Meyer J R, Evans A J, Yu J S, Slivken S and Razeghi M 2005 IEEE J. Quantum Electron. 41 833 [28] Bai Y, Bandyopadhyay N, Tsao S, Selcuk E, Slivken S and Razeghi M 2010 Appl. Phys. Lett. 97 25 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|