Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 074203    DOI: 10.1088/1674-1056/adc18e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimization of wide frequency range 6H-SiC MEMS chips for a fiber optic Fabry-Perot accelerometer

Mariano Mahissi(马依思·马里亚诺)1,2, Xinli Ma(马新莉)2,†, Weiming Cai(蔡卫明)2,‡, Xianmin Zhang(章献民)1, and Michel Dossou(多苏·米歇尔)3
1 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
2 School of Information Science and Engineering, Ningbo Tech University, Ningbo 315100, China;
3 Research Unit in Photonics and Wireless Communications, LETIA/EPAC, University of Abomey-Calavi, 01 BP 526 Abomey-Calavi, Benin
Abstract  Vibration detection using sensors with both wide working frequency range, good sensitivity, and other good performances is a topic of great interest in fields such as inertial navigation, deep-sea fishing boat engines condition monitoring, seismic monitoring, attitude, and heading reference system, $etc$. This paper investigates two 6H-SIC MEMS diaphragms, one triangular and the other square, used in a fiber optic Fabry-Perot (FP) accelerometer in an experimental scenario. The triangular chip shows a wide working frequency range of 630 Hz-5300 Hz, a natural frequency of 44.3 kHz, and a mechanical sensitivity of 0.154 nm/g. An optimal structure of the square chip used in a probe such as a fiber optic FP accelerometer also shows a wide working frequency range of 120 Hz-2300 Hz; a good sensitivity of 31.5 mV/g, a resonance frequency of 7873 Hz, an accuracy of 0.96% F.S., a frequency measurement error of 1.15%, and an excellent linearity of 0.9995.
Keywords:  triangular chip      accelerometer      MEMS      working frequency range      optical fiber  
Received:  17 December 2024      Revised:  04 March 2025      Accepted manuscript online:  18 March 2025
PACS:  42.50.-p (Quantum optics)  
  62.23.-c (Structural classes of nanoscale systems)  
  61.46.-w (Structure of nanoscale materials)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 32473216) and Ningbo Youth Science and Technology Innovation Leading Talent Project (Grant No. 2023QL004).
Corresponding Authors:  Xinli Ma, Weiming Cai     E-mail:  maxinli@tju.edu.cn;caiwm@nit.zju.edu.cn

Cite this article: 

Mariano Mahissi(马依思·马里亚诺), Xinli Ma(马新莉), Weiming Cai(蔡卫明), Xianmin Zhang(章献民), and Michel Dossou(多苏·米歇尔) Optimization of wide frequency range 6H-SiC MEMS chips for a fiber optic Fabry-Perot accelerometer 2025 Chin. Phys. B 34 074203

[1] Qu Z, Ouyang H, Liu H, Hu C, Tu L C and Zhou Z 2022 Opt. Lett. 47 718
[2] Ahmad N, Ghazilla R A R, Khairi N M and Kasi V 2013 Int. J. Sign. Proce. Syst. 1 256
[3] Beeby S, Ensel G, Kraft M and White N 2004 MEMS Mechanical Sensors (Boston: Artech) p. 280
[4] Qu Z, Liu H, Ouyang H, Hu C and Tu L 2020 in 2020 IEEE Sensors (IEEE, 2020), pp. 1-4
[5] Zhao M, Jiang K, Bai H, Wang H and Wei X 2020 Micr. Tech. 26 1961
[6] Jiang Y, Li J, Zhou Z, Jiang X and Zhang D 2016 Sensors 16 1660
[7] Afshar B H and Digonnet M J F 2020 Opt. Lett. 45 3933
[8] Huang Y, Tang F, Ma D, Liu Z and Wang X 2019 IEEE Photon. J. 11 1
[9] Lin Q, Chen L, Li S and Wu X 2011 Meas. Sci. Tech. 22 015303
[10] Ran Z, Lu E, Rao Y, Ni M, Peng F and Zeng D 2011 Proceedings of the 21st International Conference on Optical Fiber Sensors, May 17, 2011, Ottawa, Canada, p. 775318
[11] Waters R L and Aklufi M E 2002 Appl. Phys. Lett. 81 3320
[12] Dirdal C A, Dullo F T, Summanwar A, Tschudi J, Gjessing J and Thrane P C V 2022 Opt. Lett. 47 1049
[13] Li C, Yang B, Zheng X, Guo X, Sun Z, Zhou L and Huang X 2022 Opt. Lett. 47 1883
[14] Chen Z H, Li C Y, Chu S Y, Tsai C C, Wang Y H, Kao H Y, Wei C L, Huang Y H, Hsiao P Y and Liu Y H 2020 IEEE Trans. Electron. Dev. 67 4399
[15] Yang C, Hu B, Lu L, Wang Z, Liu W and Sun C 2022 Micromachines 13 1608
[16] Gilbert J A 1997 Opt. Eng. 36 22
[17] Zhang Z, Gong H, Yu C, Ni K and Zhao C 2022 Opt. Laser Tech. 150 107949
[18] Ran Z L, Liu W J, Liao X, Rao Y J and Chiang K S 2008 Opt. Express 16 2252
[19] Mahissi M, Cai W, Zhang X, Tong X, Zhang C, Ma X and Dossou M 2023 Opt. Express 31 25025
[20] Podder P, Constantinou P, Mallick D, Amann A and Roy S 2017 J. Micr. Syst. 26 539
[21] Zhai Y, Li H, Tao Z, Cao X, Yang C, Che Z and Xu T 2022 Micr. Eng. 260 111793
[1] Asymptotic analysis on bright solitons and breather solutions of a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide
Xin Zhao(赵鑫), Zhong Du(杜仲), Li-Jian Zhou(周立俭), Rong-Xiang Liu(刘荣香), and Xu-Hu Wang(王绪虎). Chin. Phys. B, 2024, 33(11): 110204.
[2] Design and simulation of an accelerometer based on NV center spin—strain coupling
Lu-Min Ji(季鲁敏), Li-Ye Zhao(赵立业), and Yu-Hai Wang(王裕海). Chin. Phys. B, 2024, 33(1): 017301.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Vector fiber Bragg gratings accelerometer based on silicone compliant cylinder for low frequency vibration monitoring
Wenyu Hu(胡文玉), Zhuo Chen(陈卓), Jiangshan You(尤江山), Ruohui Wang(王若晖), Rui Zhou(周锐), and Xueguang Qiao(乔学光). Chin. Phys. B, 2023, 32(11): 114201.
[5] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[6] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[7] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[8] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[9] A novel low-loss four-bit bandpass filter using RF MEMS switches
Lulu Han(韩路路), Yu Wang(王宇), Qiannan Wu(吴倩楠), Shiyi Zhang(张世义), Shanshan Wang(王姗姗), and Mengwei Li(李孟委). Chin. Phys. B, 2022, 31(1): 018506.
[10] Effect of staggered array structure on the flow field of micro gas chromatographic column
Daohan Ge(葛道晗), Zhou Hu(胡州), Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(1): 010701.
[11] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[12] A novel multifunctional electronic calibration kit integrated by MEMS SPDT switches
Shan-Shan Wang(王姗姗), Qian-Nan Wu(吴倩楠), Yue-Sheng Gao(高跃升), Jian-Gang Yu(余建刚), Qian-Long Cao(曹钎龙), Lu-Lu Han(韩路路), and Meng-Wei Li(李孟委). Chin. Phys. B, 2021, 30(11): 118501.
[13] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[14] Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), and Jin-Ze Li(李金泽)$. Chin. Phys. B, 2020, 29(11): 110701.
[15] Efficient molecular model for squeeze-film damping in rarefied air
Cun-Hao Lu(陆存豪), Pu Li(李普), Yu-Ming Fang(方玉明). Chin. Phys. B, 2019, 28(9): 098501.
No Suggested Reading articles found!