Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 094207    DOI: 10.1088/1674-1056/abf10f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber

Xu Han(韩旭)1, Ying Han(韩颖)1,†, Chao Mei(梅超)2, Jing-Zhao Guan(管景昭)1, Yan Wang(王彦)1, Lin Gong(龚琳)1, Jin-Hui Yuan(苑金辉)2, and Chong-Xiu Yu(余重秀)2
1 Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications(BUPT), Beijing 100876, China
Abstract  We numerically investigate the mid-infrared (MIR) supercontinuum (SC) and SC-based optical frequency comb (OFC) generations when the three optical modes (LP01, LP02, and LP12) are considered in a multimode tellurite photonic crystal fiber (MM-TPCF). The geometrical parameters of the MM-TPCF are optimized to support the multimode propagation and obtain the desired dispersion characteristics of the considered three optical modes. When the pump pulse with center wavelength λ = 2.5 μm, width T = 80 fs, and peak power P = 18 kW is coupled into the anomalous dispersion region of the LP01, LP02, and LP12 modes of the MM-TPCF, the -40-dB bandwidth of the generated MIR SCs can be up to 2.56, 1.39, and 1.12 octaves, respectively, along with good coherence. Moreover, the nonlinear dynamics of the generated SCs are analyzed. Finally, the MIR SCs-based OFCs are demonstrated when a train of 50 pulses at 1-GHz repetition rate is used as the pump source and launched into the MM-TPCF.
Keywords:  multimode tellurite photonic crystal fiber      supercontinuum      optical frequency comb      mid-infrared spectral region  
Received:  06 January 2021      Revised:  18 March 2021      Accepted manuscript online:  23 March 2021
PACS:  42.65.Wi (Nonlinear waveguides)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.70.Km (Infrared transmitting materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074331, 61875238, and 61971373), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2021203002, F2019203549, and F2020203050), and the Science and Technology Support Projects of Research and Development Plans of Qinhuangdao City (Grant No. 202004A001).
Corresponding Authors:  Ying Han     E-mail:  hanyingysu@163.com

Cite this article: 

Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀) Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber 2021 Chin. Phys. B 30 094207

[1] Yuan J H, Kang Z, Li F, Zhang X, Sang X, Wu Q, Yan B, Wang K, Zhou X, Zhong K, Zhou G, Yu C, Lu C, Tam Y and Wai P K A 2017 J. Lightwave Technol. 35 2994
[2] Thorpe M J, Hudson D D, Moll K D, Lasri J and Ye J 2007 Opt. Lett. 32 307
[3] Hartl I, Li X, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K and Windeler R S 2001 Opt. Lett. 26 608
[4] Torres-Company V, Schröder J, Fülöp A, Mazur M, Lundberg L, Helgason Ó B, Karlsson M and Andrekson P A 2019 J. Lightwave Technol. 37 1663
[5] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
[6] North T and Rochette M 2012 Opt. Lett. 37 2799
[7] Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 17 21497
[8] Liao M, Yan X, Gao W, Duan Z, Qin G, Suzuki T and Ohishi Y 2011 Opt. Express 19 15389
[9] Price J H V, Belardi W, Monro T M, Malinowski A, Piper A and Richardson D J 2002 Opt. Express 10 382
[10] Agrawal G 2013 Nonlinear Fiber Optics, 5th edn. (San Francisco: Academic Press) p. 388
[11] Dudley J M and Taylor J R 2009 Nat. Photonics 3 85
[12] Kaminski C F, Watt R S, Elder A D, Frank J H and Hult J 2008 Appl. Phys. B 92 367
[13] Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J and Coen S 2002 J. Opt. Soc. Am. B 19 765
[14] Herrmann J, Griebner U, Zhavoronkov N, Husakou A, Nickel D, Knight J C, Wadsworth W J, Russell P St J and Korn G 2002 Phys. Rev. Lett. 88 173901
[15] Nicholson J W, Yan M F, Wisk P, Fleming J, DiMarcello F, Monberg E, Yablon A, Jorgensen C and Veng T 2003 Opt. Lett. 28 643
[16] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25
[17] Town G E, Funaba T, Ryan T and Lyytikainen K 2003 Appl. Phys. B 77 235
[18] Ghosh D, Roy S, Pal M, Pal A, Bhadra S K, McCarthy J, Bookey H and Kar A 2009 Appl. Opt. 48 G12
[19] Kubat I, Agger C S, Moselund P M and Bang O 2013 J. Opt. Soc. Am. B 30 2743
[20] Thapa R, Rhonehouse D, Nguyen D, Wiersma K, Smith C, Zong J and Chavez-Pirson A 2013 Proc. SPIE 8898
[21] Shi H, Feng X, Tan F, and Wang P 2016 Opt. Mater. Express 6 3967
[22] Domachuk P, Wolchover N A, Cronin-Golomb M, Wang A, George A K, Cordeiro C M B, Knight J C and Omenetto F G 2008 Opt. Express 16 7161
[23] Ou H, Dai S, Zhang P, Liu Z, Wang X, Chen F, Xu H, Luo B, Huang Y and Wang R 2016 Opt. Lett. 41 3201
[24] Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S and Wang R 2017 Laser Photon. Rev. 11 1700005
[25] Li Q, Liu L, Jia Z, Qin S, Ohishi Y and Qin W P 2017 J. Lightwave Technol. 35 4740
[26] Xu F, Mei C, Yuan J, Li F, Kang Z, Yan B, Wang K, Sang X, Zhou X, Zhong K and Yu C 2018 Opt. Soc. of Am. W3A 30
[27] Nguyen H P T, Tong T H and Luo X 2019 CLEO: Science and Innovations, March 5-10, San Jose, USA, p. 109
[28] Klimczak M, Michalik D and Stpniewski G J 2019 J. Opt. Soc. Am. B 36 A112
[29] Richardson D J, Fini J M and Nelson L E 2013 Nat. Photon. 7 354
[30] Poletti F and Horak P 2009 Opt. Express 17 6134
[31] Salem A B, Trichili A and Cherif R 2016 Appl. Opt. 55 4317
[32] Cherif R, Zghal M, Tartara L and Degiorgio V 2008 Opt. Express 16 2147
[33] Chen Y, Chen Z, Wadsworth W J and Birks T A 2013 Opt. Express 21 17786
[34] Jiang X, Joly N Y, Finger M A, Babic F, Pang M, Sopalla R, Frosz M H, Poulain S, Poulain M, Cardin V, Travers J C and Russell P St J 2016 Opt. Lett. 41 4245
[35] Kubat I and Bang O 2016 Opt. Express 24 2513
[36] Khalifa A B, Salem A B and Cherif R 2018 Frontiers in Optics, September 16-20, 2018, Washington DC, USA, p. 18
[37] Eslami Z, Ryczkowski P and Salmela L 2020 CLEO: Science and Innovations, March 10-15, 2020, Washington DC, USA, p. 3103
[38] Liao M, Duan Z, Gao W, Yan X, Suzuki T and Ohishi Y 2011 Appl. Phys. B 105 681
[39] Cheng T, Sakai Y, Suzuki T and Ohishi Y 2015 Opt. Lett. 40 2088
[40] Li F, Li Q, Yuan J and Wai P A 2014 Opt. Express 22 27339
[41] Cheng Y, Yuan J, Mei C, Li F, Kang Z, Yan B, Zhou X, Wu Q, Wang K, Sang X, Zhong K, Yu C and Farrell G 2020 Opt. Commun. 454 124380
[42] Hult J 2007 J. Lightwave Technol. 25 820
[1] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[2] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[5] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[6] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[7] Orientation-dependent depolarization of supercontinuum in BaF2 crystal
Zi-Xi Li(李子熙), Cheng Gong(龚成), Tian-Jiao Shao(邵天骄), Lin-Qiang Hua(华林强), Xue-Bin Bian(卞学滨), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 014212.
[8] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[9] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[10] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[11] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[12] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[13] Femtosecond enhancement cavity with kilowatt average power
Jin Zhang(张津), Lin-Qiang Hua(华林强), Shao-Gang Yu(余少刚), Zhong Chen(陈忠), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2019, 28(4): 044206.
[14] Active hyperspectral imaging with a supercontinuum laser source in the dark
Zhongyuan Guo(郭中源), Yu Liu(刘煜), Xin Zheng(郑鑫), Ke Yin(殷科). Chin. Phys. B, 2019, 28(3): 034206.
[15] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
No Suggested Reading articles found!