Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 073202    DOI: 10.1088/1674-1056/add00d
Special Issue: SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems Prev   Next  

Characterization of cold atoms based on photoionization momentum spectra

Zhixian Wu(吴志贤)1, Shushu Ruan(阮舒舒)2, Zhenjie Shen(沈镇捷)1,†, Jie Liu(刘杰)2, Xinglong Yu(余兴龙)2, Lifeng Chen(陈利丰)1, Bing Zhu(朱兵)3, Xincheng Wang(王新成)1, and Yuhai Jiang(江玉海)1,2,4,‡
1 Center for Transformative Science and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
2 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
3 HSBC Laboratory, Guangzhou 510510, China;
4 School of Physics, Henan Normal University, Xinxiang 453007, China
Abstract  We propose a method to characterize the features of a cold strontium cloud in a magneto-optical trap (MOT) through the photoionization of cold Sr atoms in a custom-designed reaction microscope. Sr atoms in the dark state of $\mathrm{5s5p \, ^3P_2}$ populated via the cascade transition $\mathrm{5s5p \, ^1P_1 \rightarrow 5s4d \, ^1D_2 \rightarrow 5s5p \, ^3P_2}$ accumulate a significant fraction, giving a long lifetime of 520 s. These atoms in the dark state are subsequently trapped by the gradient magnetic field of the MOT. By scanning the Sr$^+$ momentum distributions ionized with an 800 nm infrared femtosecond laser, we are able to outline the size of $\sim0.55$ mm in radius and the temperature of $\sim0.40$ mK for the dark-state atoms, which is significantly cooler than the MOT temperature of 3.3 mK trapped in the 461 nm. The size of MOT exhibits an oblate spheroidal distribution with a radius of approximately 0.35 mm and 0.55 mm, extracted with momenta of photoion and absorption imaging, respectively. The results using the photoion momenta are consistent with the expected results from absorption imaging, which confirms the method's reliability. The advantage of this method is the ability to simultaneously characterize the distribution information of atoms in different initial states within the cold atomic cloud.
Keywords:  multiphoton ionization      photoelectron momentum      magneto-optical trap (MOT)  
Received:  13 March 2025      Revised:  18 April 2025      Accepted manuscript online:  24 April 2025
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  37.10.De (Atom cooling methods)  
Fund: Project supported by the Natural Science Foundation of Henan (Grant No. 252300421304), the National Natural Science Foundation of China (Grant Nos. 12204498, 12474259, and 12334011), and the National Key Research and Development Program of China (Grant No. 2022YFA1604302).
Corresponding Authors:  Zhenjie Shen, Yuhai Jiang     E-mail:  shenzhj2@shanghaitech.edu.cn;jiangyh3@shanghaitech.edu.cn

Cite this article: 

Zhixian Wu(吴志贤), Shushu Ruan(阮舒舒), Zhenjie Shen(沈镇捷), Jie Liu(刘杰), Xinglong Yu(余兴龙), Lifeng Chen(陈利丰), Bing Zhu(朱兵), Xincheng Wang(王新成), and Yuhai Jiang(江玉海) Characterization of cold atoms based on photoionization momentum spectra 2025 Chin. Phys. B 34 073202

[1] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
[2] Tan Z, Lu B, Han C and Lee C 2024 Chin. Phys. B 33 093701
[3] Gross C and Bloch I 2017 Science 357 995
[4] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[5] Bloch I, Dalibard J and Nascimbène S 2012 Nat. Phys. 8 267
[6] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004
[7] Ludlow A D, BoydMM, Ye J, Peik E and Schmidt P O 2014 Rev. Mod. Phys. 87 637
[8] Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W and Ludlow A D 2017 Nat. Photon. 11 48
[9] Zheng X, Dolde J, Lochab V, Merriman B N, Li H and Kolkowitz S 2022 Nature 602 425
[10] Li R, Yuan J,Wang X, Hou X, Zhang S, Zhu Z, Ma Y, Gao Q,Wang Z, Yan T, Qin C, Li S, Zhang Y, Weidemüller M and Jiang Y 2019 JINST 14 02022
[11] Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T, Wang X, Weidemüller M and Jiang Y 2020 Chin. Phys. Lett. 37 053201
[12] Yuan J, Liu S,Wang X, Shen Z, Ma Y, Ma H, Meng Q, Yan T M, Zhang Y, Dorn A, Weidemüller M, Ye D and Jiang Y 2020 Phys. Rev. A 102 043112
[13] Ma Y, Li R, Yuan J, Meng Q, Ma H, Ruan S, Zhang Y, Yan T, Shen Z, Wang X and Jiang Y 2020 Chinese Journal of Lasers 47 0601011 (in Chinese)
[14] Ma H, Wang X, Zhang L, Zou Z, Yuan J, Ma Y, Lv R, Shen Z, Yan T, Weidemüller M, Ye D and Jiang Y 2023 Phys. Rev. A 107 033114
[15] Ruan S, Yu X, Shen Z, Wang X, Liu J, Wu Z, Tan C, Chen P, Yan T M, Ren X, Weidemüller M, Zhu B and Jiang Y 2024 Phys. Rev. A 109 023118
[16] Ruan S, Han Y, Shen Z, Yu X, Fang Y K, Wang X, Chen A, Liu J, Wu Z, Ueda K, Weidemüller M, Zhu B, Peng L Y and Jiang Y 2024 Phys. Rev. A 110 033114
[17] Ma H, Zhang L, Wang X, Zou Z, Lv R, Shen Z, Chen A, Weidemüller M, Ueda K, Ye D and Jiang Y 2025 Phys. Rev. Lett. 134 123204
[18] Anderson M, Ensher J, Matthews M, Wieman C and Cornell E 1995 Science 269 198
[19] Cornell E A and Wieman C E 2002 Rev. Mod. Phys. 74 875
[20] Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C and Rolston S L 1999 Phy. Rev. Lett. 83 4776
[21] Killian T C, Chen Y C, Gupta P, Laha S, Martinez Y N, Mickelson P G, Nagel S B, Saenz A D and Simien C E 2005 J. Phys. B: Atom. Mol. Opt. Phys. 38 S351
[22] Bergeson S D, Baalrud S D, Ellison C L, Grant E, Graziani F R, Killian T C, Murillo M S, Roberts J L and Stanton L G 2019 Phys. Plasmas 26 100501
[23] Qiao C, Tan C, Siegl J, Hu F, Niu Z, Jiang Y, Weidemüller M and Zhu B 2021 Phys. Rev. A 103 063313
[24] Tan C, Hu F, Niu Z, Jiang Y, Weidemüller M and Zhu B 2022 Chin. Phys. Lett. 39 093202
[25] Hu F, Tan C, Jiang Y, Weidemüller M and Zhu B 2022 Chin. Phys. B 31 016702
[26] Chu S, Hollberg L, Bjorkholm J E, Cable A and Ashkin A 1985 Phys. Rev. Lett. 55 48
[27] Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L and Metcalf H J 1988 Phys. Rev. Lett. 61 169
[28] Xu X, Loftus T H, Hall J L, Gallagher A and Ye J 2003 J. Opt. Soc. Am. B 20 968
[29] Yasuda M and Katori H 2004 Phys. Rev. Lett. 92 153004
[30] Dimitriou A, Loriot V, Marciniak A, Barillot T, Danakas S, Lépine F, Bordas C and Cohen S 2022 Phys. Rev. A 105 053106
[31] Fabre F, Petite G, Agostini P and Clement M 1982 J. Phys. B: Atom. Mol. Opt. Phys. 15 1353
[32] Petrich W, Anderson M H, Ensher J R and Cornell E A 1994 J. Opt. Soc. Am. B 11 1332
[33] Hu F, Nosske I, Couturier L, Tan C, Qiao C, Chen P, Jiang Y H, Zhu B and Weidemüller M 2019 Phys. Rev. A 99 033422
[34] Kokkelmans S J J M F, Boesten H M J M and Verhaar B J 1997 Phys. Rev. A 55 R1589
[35] Nagel S B, Simien C E, Laha S, Gupta P, Ashoka V S and Killian T C 2003 Phys. Rev. A 67 011401
[1] Effective working regions of the grating chip for planar-integrated magneto-optics trap
Chang-Jiang Huang(黄长江), Ling-Xiao Wang(王凌潇), Liang Chen(陈梁), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Chang-Ling Zou(邹长铃), and Guo-Yong Xiang(项国勇). Chin. Phys. B, 2025, 34(7): 074211.
[2] Alignment-dependent ionization of molecules in near-circularly polarized intense laser fields
Jie Liu(刘洁), Yong-Kang Zhang(张永康), and Xiao-Lei Hao(郝小雷). Chin. Phys. B, 2025, 34(5): 053201.
[3] Compact magneto-optical traps using planar optics
Zhi Tan(谭智), Bo Lu(鹿博), Chengyin Han(韩成银), and Chaohong Lee(李朝红). Chin. Phys. B, 2024, 33(9): 093701.
[4] Momentum distributions of symmetric (H2+) and asymmetric (HeH2+) molecular ions in a circularly polarized laser field under different ionization mechanisms
Xin-Yu Hao(郝欣宇), Shu-Juan Yan(闫淑娟), Ying Guo(郭颖), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(12): 123401.
[5] Photoelectron momentum distributions of triatomic CO2 molecules by circularly polarized attosecond pulses
Si-Qi Zhang(张思琪), Jun Zhang(张军), Xin-Yu Hao(郝欣宇), Jing Guo(郭静), Aihua Liu(刘爱华), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2024, 33(10): 103301.
[6] Electron vortices generation of photoelectron of H2+ by counter-rotating circularly polarized attosecond pulses
Haojing Yang(杨浩婧), Xiaoyu Liu(刘晓煜), Fengzheng Zhu(朱风筝), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2024, 33(1): 013303.
[7] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[8] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[9] Molecular photoelectron momentum and angular distributions of N2 molecules by ultrashort attosecond laser pulses
Si-Qi Zhang(张思琪), Qi Zhen(甄琪), Zhi-Jie Yang(杨志杰), Jun Zhang(张军), Ai-Hua Liu(刘爱华), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(4): 043201.
[10] Effects of initial electronic state on vortex patterns in counter-rotating circularly polarized attosecond pulses
Qi Zhen(甄琪), Jia-He Chen(陈佳贺), Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2021, 30(2): 024203.
[11] Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay
Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙), Wei Feng(冯伟), Sheng-Peng Zhou(周胜鹏), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(1): 013201.
[12] Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields
Peng-Cheng Li(李鹏程), Shih-I Chu. Chin. Phys. B, 2020, 29(8): 083202.
[13] Photoelectron momentum distributions of single-photon ionization under a pair of elliptically polarized attosecond laser pulses
Hui-Fang Cui(崔会芳), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2020, 29(7): 074203.
[14] Trajectory analysis of few-cycle strong field ionization in two-color circularly polarized fields
Yan Huang(黄燕), Chaochao Qin(秦朝朝), Yizhu Zhang(张逸竹), Xincheng Wang(王新成), Tian-Min Yan(阎天民), Yuhai Jiang(江玉海). Chin. Phys. B, 2019, 28(9): 093202.
[15] Photoelectron imaging of resonance-enhanced multiphoton ionization and above-threshold ionization of ammonia molecules in a strong 800-nm laser pulse
Le-Le Song(宋乐乐), Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Qiu-Nan Tong(佟秋男), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春). Chin. Phys. B, 2019, 28(6): 063201.
No Suggested Reading articles found!