Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 053201    DOI: 10.1088/1674-1056/adbdc2
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Alignment-dependent ionization of molecules in near-circularly polarized intense laser fields

Jie Liu(刘洁), Yong-Kang Zhang(张永康), and Xiao-Lei Hao(郝小雷)†
Institute of Theoretical Physics, State Key Laboratory of Quantum Optics Technologies and Devices, Shanxi University, Taiyuan 030006, China
Abstract  The alignment-dependent photoelectron spectrum is a valuable tool for mapping out the electronic structure of molecular orbitals. However, this approach may not be applicable to all molecules, such as CO2, as the ionization process in a linearly polarized laser field involves contributions from orbitals other than the highest occupied molecular orbital (HOMO). Here, we conducted a theoretical investigation into the ionization process of N2 and CO2 in near-circularly polarized laser field using the Coulomb-corrected strong-field approximation (CCSFA) method for molecules. In particular, we introduced a generalized dressed state into the CCSFA method in order to account for the impact of the laser field on the molecular initial state. The simulated alignment-dependent photoelectron momentum distribution (PMD) of the two molecules exhibited markedly disparate behaviors, which were in excellent agreement with the previous experimental observations reported in [Phys. Rev. A 102, 013117 (2020)]. Our findings indicate that under a near-circularly polarized laser field, the alignment-dependent PMD of molecules is primarily sourced from the HOMO, in contrast to the situation under a linearly polarized laser field. Moreover, a satisfactory correlation between the alignment-dependent angular distribution and the orbital symmetry was observed, which suggests an effective approach for molecular orbital imaging.
Keywords:  alignment      Coulomb-corrected strong-field approximation (CCSFA)      photoelectron momentum distribution (PMD)      image  
Received:  23 January 2025      Revised:  27 February 2025      Accepted manuscript online:  07 March 2025
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
  33.80.-b (Photon interactions with molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274273).
Corresponding Authors:  Xiao-Lei Hao     E-mail:  xlhao@sxu.edu.cn

Cite this article: 

Jie Liu(刘洁), Yong-Kang Zhang(张永康), and Xiao-Lei Hao(郝小雷) Alignment-dependent ionization of molecules in near-circularly polarized intense laser fields 2025 Chin. Phys. B 34 053201

[1] Rost J M and Saalmann U 2019 Nat. Photon. 13 439
[2] Blaga C I, Xu Junliang, DiChiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F and Lin C D 2012 Nature 483 194
[3] Niikura H, Légaré F, Hasbani R, Bandrauk A D, Ivanov M Y, Villeneuve D M and Corkum P B 2002 Nature 417 917
[4] Niikura H, Légaré F, Hasbani R, Ivanov M Y, Villeneuve D M and Corkum P B 2003 Nature 421 826
[5] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U 2008 Nat. Phys. 4 565
[6] Zhou S S, Lan W D, Chen J G, Wang J, Guo F M and Yang Y J 2022 Phys. Rev. A 106 023510
[7] Uiberacker M, Uphues Th, Schultze M Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2007 Nature 446 627
[8] Pruna F R and Vrakking M J J 2001 Phys. Rev. Lett. 87 153902
[9] Pavičić D, Lee K F, Rayner D M, Corkum P B and Villeneuve D M 2007 Phys. Rev. Lett. 98 243001
[10] Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve D M and Corkum P B 2008 Science 320 1478
[11] Akagi H, Otobe T, Staudte A, Shiner A, Turner F, Dörner R, Villeneuve D M and Corkum P B 2009 Science 325 1364
[12] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
[13] Thomann I, Lock R, Sharma V, Gagnon E, Pratt S T, Kapteyn H C, Murnane M M and Li Wen 2008 J. Phys. Chem. A 112 9382
[14] Son S K and Chu S I 2009 Phys. Rev. A 80 011403
[15] Petretti S, Vanne Y V, Saenz A, Castro A and Decleva P 2010 Phys. Rev. Lett. 104 223001
[16] Majety V P and Scrinzi A 2015 Phys. Rev. Lett. 115 103002
[17] Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-samha M, Madsen L B and Keller U 2012 Nat. Phys. 8 76
[18] Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Yu, Smirnova O and Dudovich N 2012 Nature 485 343
[19] Yu M, Liu K, Li M, Yan J Q, Cao C P, Tan J, Liang J T, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M and Lu P X 2022 Light Sci. Appl. 11 215
[20] Zhou H S, Li Q Y, Guo F, Wang J, Chen J G and Yang Y J 2021 Chem. Phys. 545 111147
[21] Fu T T, Zhou S S, Chen J G,Wang J, Guo F M and Yang Y J 2023 Opt. Express 31 30171
[22] Chen J Q, JiangWL, Qiao Y, Yang Y J and Chen J G 2025 Chin. Phys. Lett. 42 013201
[23] Wu J, Magrakvelidze M, Schmidt L P H, Kunitski M, Pfeifer T, Schöffler M, Pitzer M, Richter M, Voss S, Sann H, Kim H, Lower J, Jahnke T, Czasch A, Thumm U and Dörner R 2013 Nat. Commun. 4 2177
[24] Serov V V, Bray A W and Kheifets A S 2019 Phys. Rev. A 99 063428
[25] Quan W, Serov V V, Wei M Z, Zhao M, Zhou Y, Wang Y L, Lai X Y, Kheifets A S and Liu X J 2019 Phys. Rev. Lett. 123 223204
[26] Khan A, Trabert D, Eckart S, Kunitski M, Jahnke T and Dörner R 2020 Phys. Rev. A 101 023409
[27] Yan J Q, Xie W H, Li M, Liu K, Luo S Q, Cao C P, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M and Lu P X 2020 Phys. Rev. A 102 013117
[28] Tong X M, Zhao Z X and Lin C D 2002 Phys. Rev. A 66 033402
[29] Muth-Böhm J, Becker A and Faisal F H M 2000 Phys. Rev. Lett. 85 2280
[30] Kjeldsen T K and Madsen L B 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2033
[31] Yan T M, Popruzhenko S V, Vrakking M J J and Bauer D 2010 Phys. Rev. Lett. 105 253002
[32] Wang C, Okunishi M, Hao X, Ito Y, Chen J, Yang Y, Lucchese R R, Zhang M, Yan B, Li W D, Ding D and Ueda K 2016 Phys. Rev. A 93 043422
[33] Yang Y Z, Ren H, Zhang M, Zhou S P, Mu X X, Li X K, Wang Z Z, Deng K, Li M X, Ma P, Li Z, Hao X L, LiWD, Chen J,Wang C C and Ding D J 2023 Nat. Commun. 14 4951
[34] DeWitt M J, Wells E and Jones R R 2001 Phys. Rev. Lett. 87 153001
[35] Lin Z Y, Jia X Y, Wang C L, Hu Z L, Kang H P, Quan W, Lai X Y, Liu X J, Chen J, Zeng B, Chu W, Yao J P, Cheng Y and Xu Z Z 2012 Phys. Rev. Lett. 108 223001
[36] Wei M Z, Wei Q, Sun R P, Xu S P, Xiao Z L, Zhou Y, Zhao M, Hao X Lei, Duan C X and Liu X J 2018 Phys. Rev. A 98 063418
[37] Milošević D B 2006 Phys. Rev. A 74 063404
[38] Chirilǎ C C and Lein M 2006 Phys. Rev. A 73 023410
[39] Becker W, Chen J, Chen S G and Milošević D B 2007 Phys. Rev. A 76 033403
[40] Busuladžić M, Gazibegovic-Busuladžić A, Milošević D B and Becker W 2008 Phys. Rev. A 78 033412
[41] Busuladžić M and Milošević D B 2010 Phys. Rev. A 82 015401
[42] Lewenstein M, Kulander K C, Schafer K J and Bucksbaum P H 1995 Phys. Rev. A 51 1495
[43] Figueira de Morisson Faria C, Schomerus H and Becker W 2002 Phys. Rev. A 66 043413
[44] Usachenko V I and Chu S I 2005 Phys. Rev. A 71 063410
[45] Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 14 1347
[46] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972
[47] Jin C, Le A T and Lin C D 2011 Phys. Rev. A 83 053409
[1] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[2] Rotational dynamics of neutral O2 driven by linearly, elliptically and circularly polarized femtosecond pulsed lasers
Ting Xu(许婷), Jin-Peng Ma(马金鹏), Xiao-Qing Hu(胡晓青), Yin-Song Tang(唐寅淞), Si-Qi Pei(裴思琪), Cong-Cong Jia(贾聪聪), Yong-Wu(吴勇), and Jian-Guo Wang(王建国). Chin. Phys. B, 2025, 34(5): 053301.
[3] Band alignment of heterojunctions formed by PtSe2 with doped GaN
Zhuoyang Lv(吕卓阳), Guijuan Zhao(赵桂娟), Wanting Wei(魏婉婷), Xiurui Lv(吕秀睿), and Guipeng Liu(刘贵鹏). Chin. Phys. B, 2025, 34(4): 047304.
[4] Multi-parameter ultrasound imaging for musculoskeletal tissues based on a physics informed generative adversarial network
Pengxin Wang(王鹏鑫), Heyu Ma(马贺雨), Tianyu Liu(刘天宇), Chengcheng Liu(刘成成), Dan Li(李旦), and Dean Ta(他得安). Chin. Phys. B, 2025, 34(4): 044301.
[5] Hybrid image encryption scheme based on hyperchaotic map with spherical attractors
Zhitang Han(韩智堂), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2025, 34(3): 030503.
[6] Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Kehan Wang(王柯涵), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(1): 010305.
[7] Deep learning-assisted common temperature measurement based on visible light imaging
Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Chin. Phys. B, 2024, 33(8): 080701.
[8] Performance optimization of the neutron-sensitive image intensifier used in neutron imaging
Jinhao Tan(谭金昊), Yushou Song(宋玉收), Jianrong Zhou(周健荣), Wenqin Yang(杨文钦), Xingfen Jiang(蒋兴奋), Jie Liu(刘杰), Chaoyue Zhang(张超月), Xiaojuan Zhou(周晓娟), Yuanguang Xia(夏远光), Shulin Liu(刘术林), Baojun Yan(闫保军), Hui Liu(刘辉), Songlin Wang(王松林), Yubin Zhao(赵豫斌), Jian Zhuang(庄建), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2024, 33(8): 086102.
[9] A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
Jingming Su(苏静明), Shihui Fang(方士辉), Yan Hong(洪炎), and Yan Wen(温言). Chin. Phys. B, 2024, 33(7): 070502.
[10] Cryo-EM combined with image deconvolution to determine ZIF-8 crystal structure
Kang Wu(吴抗), Baisong Yang(杨柏松), Wenhua Xue(薛文华), Dapeng Sun(孙大鹏), Binghui Ge(葛炳辉), and Yumei Wang(王玉梅). Chin. Phys. B, 2024, 33(7): 076802.
[11] Model-driven CT reconstruction algorithm for nano-resolution x-ray phase contrast imaging
Yuhang Tan(谭雨航), Xuebao Cai(蔡学宝), Jiecheng Yang(杨杰成), Ting Su(苏婷), Hairong Zheng(郑海荣), Dong Liang(梁栋), Peiping Zhu(朱佩平), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2024, 33(7): 078702.
[12] Imaging plate scanners calibration and the attenuation behavior of imaging plate signals
Nan Bo(薄楠) and Nai-Yan Wang(王乃彦). Chin. Phys. B, 2024, 33(6): 060701.
[13] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[14] Novel self-embedding holographic watermarking image encryption protection scheme
Linian Wang(王励年), Nanrun Zhou(周楠润), Bo Sun(孙博), Yinghong Cao(曹颖鸿), and Jun Mou(牟俊). Chin. Phys. B, 2024, 33(5): 050501.
[15] Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem
Jing-Xi Tian(田婧希), Song-Chang Jin(金松昌), Xiao-Qiang Zhang(张晓强), Shao-Wu Yang(杨绍武), and Dian-Xi Shi(史殿习). Chin. Phys. B, 2024, 33(5): 050502.
No Suggested Reading articles found!