Abstract The alignment-dependent photoelectron spectrum is a valuable tool for mapping out the electronic structure of molecular orbitals. However, this approach may not be applicable to all molecules, such as CO, as the ionization process in a linearly polarized laser field involves contributions from orbitals other than the highest occupied molecular orbital (HOMO). Here, we conducted a theoretical investigation into the ionization process of N and CO in near-circularly polarized laser field using the Coulomb-corrected strong-field approximation (CCSFA) method for molecules. In particular, we introduced a generalized dressed state into the CCSFA method in order to account for the impact of the laser field on the molecular initial state. The simulated alignment-dependent photoelectron momentum distribution (PMD) of the two molecules exhibited markedly disparate behaviors, which were in excellent agreement with the previous experimental observations reported in [Phys. Rev. A102, 013117 (2020)]. Our findings indicate that under a near-circularly polarized laser field, the alignment-dependent PMD of molecules is primarily sourced from the HOMO, in contrast to the situation under a linearly polarized laser field. Moreover, a satisfactory correlation between the alignment-dependent angular distribution and the orbital symmetry was observed, which suggests an effective approach for molecular orbital imaging.
Jie Liu(刘洁), Yong-Kang Zhang(张永康), and Xiao-Lei Hao(郝小雷) Alignment-dependent ionization of molecules in near-circularly polarized intense laser fields 2025 Chin. Phys. B 34 053201
[1] Rost J M and Saalmann U 2019 Nat. Photon. 13 439 [2] Blaga C I, Xu Junliang, DiChiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F and Lin C D 2012 Nature 483 194 [3] Niikura H, Légaré F, Hasbani R, Bandrauk A D, Ivanov M Y, Villeneuve D M and Corkum P B 2002 Nature 417 917 [4] Niikura H, Légaré F, Hasbani R, Ivanov M Y, Villeneuve D M and Corkum P B 2003 Nature 421 826 [5] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U 2008 Nat. Phys. 4 565 [6] Zhou S S, Lan W D, Chen J G, Wang J, Guo F M and Yang Y J 2022 Phys. Rev. A 106 023510 [7] Uiberacker M, Uphues Th, Schultze M Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2007 Nature 446 627 [8] Pruna F R and Vrakking M J J 2001 Phys. Rev. Lett. 87 153902 [9] Pavičić D, Lee K F, Rayner D M, Corkum P B and Villeneuve D M 2007 Phys. Rev. Lett. 98 243001 [10] Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve D M and Corkum P B 2008 Science 320 1478 [11] Akagi H, Otobe T, Staudte A, Shiner A, Turner F, Dörner R, Villeneuve D M and Corkum P B 2009 Science 325 1364 [12] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867 [13] Thomann I, Lock R, Sharma V, Gagnon E, Pratt S T, Kapteyn H C, Murnane M M and Li Wen 2008 J. Phys. Chem. A 112 9382 [14] Son S K and Chu S I 2009 Phys. Rev. A 80 011403 [15] Petretti S, Vanne Y V, Saenz A, Castro A and Decleva P 2010 Phys. Rev. Lett. 104 223001 [16] Majety V P and Scrinzi A 2015 Phys. Rev. Lett. 115 103002 [17] Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-samha M, Madsen L B and Keller U 2012 Nat. Phys. 8 76 [18] Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Yu, Smirnova O and Dudovich N 2012 Nature 485 343 [19] Yu M, Liu K, Li M, Yan J Q, Cao C P, Tan J, Liang J T, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M and Lu P X 2022 Light Sci. Appl. 11 215 [20] Zhou H S, Li Q Y, Guo F, Wang J, Chen J G and Yang Y J 2021 Chem. Phys. 545 111147 [21] Fu T T, Zhou S S, Chen J G,Wang J, Guo F M and Yang Y J 2023 Opt. Express 31 30171 [22] Chen J Q, JiangWL, Qiao Y, Yang Y J and Chen J G 2025 Chin. Phys. Lett. 42 013201 [23] Wu J, Magrakvelidze M, Schmidt L P H, Kunitski M, Pfeifer T, Schöffler M, Pitzer M, Richter M, Voss S, Sann H, Kim H, Lower J, Jahnke T, Czasch A, Thumm U and Dörner R 2013 Nat. Commun. 4 2177 [24] Serov V V, Bray A W and Kheifets A S 2019 Phys. Rev. A 99 063428 [25] Quan W, Serov V V, Wei M Z, Zhao M, Zhou Y, Wang Y L, Lai X Y, Kheifets A S and Liu X J 2019 Phys. Rev. Lett. 123 223204 [26] Khan A, Trabert D, Eckart S, Kunitski M, Jahnke T and Dörner R 2020 Phys. Rev. A 101 023409 [27] Yan J Q, Xie W H, Li M, Liu K, Luo S Q, Cao C P, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M and Lu P X 2020 Phys. Rev. A 102 013117 [28] Tong X M, Zhao Z X and Lin C D 2002 Phys. Rev. A 66 033402 [29] Muth-Böhm J, Becker A and Faisal F H M 2000 Phys. Rev. Lett. 85 2280 [30] Kjeldsen T K and Madsen L B 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2033 [31] Yan T M, Popruzhenko S V, Vrakking M J J and Bauer D 2010 Phys. Rev. Lett. 105 253002 [32] Wang C, Okunishi M, Hao X, Ito Y, Chen J, Yang Y, Lucchese R R, Zhang M, Yan B, Li W D, Ding D and Ueda K 2016 Phys. Rev. A 93 043422 [33] Yang Y Z, Ren H, Zhang M, Zhou S P, Mu X X, Li X K, Wang Z Z, Deng K, Li M X, Ma P, Li Z, Hao X L, LiWD, Chen J,Wang C C and Ding D J 2023 Nat. Commun. 14 4951 [34] DeWitt M J, Wells E and Jones R R 2001 Phys. Rev. Lett. 87 153001 [35] Lin Z Y, Jia X Y, Wang C L, Hu Z L, Kang H P, Quan W, Lai X Y, Liu X J, Chen J, Zeng B, Chu W, Yao J P, Cheng Y and Xu Z Z 2012 Phys. Rev. Lett. 108 223001 [36] Wei M Z, Wei Q, Sun R P, Xu S P, Xiao Z L, Zhou Y, Zhao M, Hao X Lei, Duan C X and Liu X J 2018 Phys. Rev. A 98 063418 [37] Milošević D B 2006 Phys. Rev. A 74 063404 [38] Chirilǎ C C and Lein M 2006 Phys. Rev. A 73 023410 [39] Becker W, Chen J, Chen S G and Milošević D B 2007 Phys. Rev. A 76 033403 [40] Busuladžić M, Gazibegovic-Busuladžić A, Milošević D B and Becker W 2008 Phys. Rev. A 78 033412 [41] Busuladžić M and Milošević D B 2010 Phys. Rev. A 82 015401 [42] Lewenstein M, Kulander K C, Schafer K J and Bucksbaum P H 1995 Phys. Rev. A 51 1495 [43] Figueira de Morisson Faria C, Schomerus H and Becker W 2002 Phys. Rev. A 66 043413 [44] Usachenko V I and Chu S I 2005 Phys. Rev. A 71 063410 [45] Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 14 1347 [46] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972 [47] Jin C, Le A T and Lin C D 2011 Phys. Rev. A 83 053409
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.