Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 073203    DOI: 10.1088/1674-1056/adcb21
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Isotope shifts due to the 1s22s 2S1/2 → 1s22p 2P1/2,3/2 transitions of Li-like Th87+ ions

Huqiang Lu(路虎强)1, Bingbing Li(李兵兵)1, Mingye Yang(杨明叶)3, Lin Dong(董霖)1, Yanmin Wang(王雁敏)1, Maijuan Li(李麦娟)1, Lei Wu(吴磊)1, Jiguang Li(李冀光)3,†, Jun Jiang(蒋军)1,‡, Chenzhong Dong(董晨钟)1, and Denghong Zhang(张登红)1,2,§
1 Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
2 Department of Physics, Tianshui Normal University, Tianshui 741000, China;
3 High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  The transition energies of the 1s22s 2S1/2 1s22p 2P1/2,3/2 transitions in Li-like Th87+ ions were calculated by combining the multi-configuration Dirac-Hartree-Fock (MCDHF) method with the model-quantum electrodynamics (model-QED) approach. The effects of electron correlation, Breit interaction, and QED effects were analyzed in detail. The isotope shifts, including the mass shifts and field shifts, due to the 2s 2S1/2 2p 2P1/2,3/2 transitions were then calculated using two different methods, namely, the MCDHF method and the finite-field method. The results show that these two methods are in excellent agreement.
Keywords:  isotope shift      MCDHF method      finite-field method      QED effect  
Received:  27 February 2025      Revised:  31 March 2025      Accepted manuscript online:  10 April 2025
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  31.30.J- (Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)  
  31.30.Gs (Hyperfine interactions and isotope effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant Nos. 1236040286, 12474250, 12174316, 12464036, and 12404306), the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University (Grant No. NWNU-LKQN2020-10), and the Funds for Innovative Fundamental Research Group Project of Gansu Province (Grant No. 20JR5RA541).
Corresponding Authors:  Jiguang Li, Jun Jiang, Denghong Zhang     E-mail:  li_jiguang@iapcm.ac.cn;jiangjun@nwnu.edu.cn;zhangdh@nwnu.edu.cn

Cite this article: 

Huqiang Lu(路虎强), Bingbing Li(李兵兵), Mingye Yang(杨明叶), Lin Dong(董霖), Yanmin Wang(王雁敏), Maijuan Li(李麦娟), Lei Wu(吴磊), Jiguang Li(李冀光), Jun Jiang(蒋军), Chenzhong Dong(董晨钟), and Denghong Zhang(张登红) Isotope shifts due to the 1s22s 2S1/2 → 1s22p 2P1/2,3/2 transitions of Li-like Th87+ ions 2025 Chin. Phys. B 34 073203

[1] Zubova N, Anisimova I, Kaygorodov M Y, Kozhedub Y S, Malyshev A, Shabaev V, Tupitsyn I, Plunien G, Brandau C and Stöhlker T 2019 J. Phys. B: At. Mol. Opt. Phys. 52 185001
[2] Orts R S, Harman Z, López-Urrutia J C, Artemyev A N, Bruhns H, Martínez A G, Jentschura U D, Keitel C H, Lapierre A, Mironov V, et al. 2006 Phys. Rev. Lett. 97 103002
[3] Brandau C, Kozhuharov C, Harman Z, Müller A, Schippers S, Kozhedub Y, Bernhardt D, Böhm S, Jacobi J, Schmidt E W, et al. 2008 Phys. Rev. Lett. 100 073201
[4] Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S, Borovik Jr A, Gwinner G, Villari A, Ralchenko Y, Takacs E, et al. 2018 Phys. Rev. A 98 052502
[5] Silwal R, Lapierre A, Gillaspy J, Dreiling J, Blundell S, Borovik Jr A, Gwinner G, Villari A, Ralchenko Y, Takacs E, et al. 2020 Phys. Rev. A 101 062512
[6] Hosier A, Blundell S, Silwal R, Lapierre A, Gillaspy J, Gwinner G, Tan J, Kwiatkowski A, Wang Y, Staiger H, et al. 2024 J. Phys. B: At. Mol. Opt. Phys. 57 195001
[7] Scharl K, Ding S, Holthoff G, Hussain M I, Kraemer S, Löbell L, Moritz D, Rozibakieva T, Seiferle B, Zacherl F, et al. 2023 Atoms 11 108
[8] Kraemer S, Chhetri P, Bara S, Claessens A, De Witte H, Elskens Y, Ferrer R, Kudryavtsev Y, Sels S, Van Den Bergh P, et al. 2023 Nucl. Instr. Meth. in Phys. Res. B 542 1
[9] Beloy K 2023 Phys. Rev. Lett. 130 103201
[10] Yamaguchi A, Shigekawa Y, Haba H, Wada M and Katori H 2024 J. Phys. Conf. Ser. 2889 012041
[11] Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G A, Li P, Thirolf P G, et al. 2024 Nature 633 63
[12] Yamaguchi A, Shigekawa Y, Haba H, Kikunaga H, Shirasaki K, Wada M and Katori H 2024 Nature 629 62
[13] Zubova N, Kozhedub Y, Shabaev V, Tupitsyn I, Volotka A, Plunien G, Brandau C and Stöhlker T 2014 Phys. Rev. A 90 062512
[14] Li J, Nazé C, Godefroid M, Fritzsche S, Gaigalas G, Indelicato P and Jönsson P 2012 Phys. Rev. A 86 022518
[15] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184
[16] Jönsson P, Gaigalas G, Fischer C F, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J, et al. 2023 Atoms 11 68
[17] Li B B, Jiang J, Wu L, Zhang R K, Li X J and Dong C Z 2024 J. Phys. B: At. Mol. Opt. Phys. 57 115003
[18] Shabaev V, Tupitsyn I and Yerokhin V 2015 Comput. Phys. Commun. 189 175
[19] Shabaev V, Tupitsyn I and Yerokhin V 2013 Phys. Rev. A 88 012513
[20] Grant I P 2007 Relativistic quantum theory of atoms and molecules: theory and computation (Springer)
[21] Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004
[22] Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W, Li J, Brage T, Grant I P, Bieroń J, et al. 2022 Atoms 11 7
[23] Palmer C 1987 J. Phys. B: At. Mol. Opt. Phys. 20 5987
[24] Shabaev V and Artemyev A 1994 J. Phys. B: At. Mol. Opt. Phys. 27 1307
[25] Shabaev V 1998 Phys. Rev. A 57 59
[26] Gaidamauskas E, Nazé C, Rynkun P, Gaigalas G, Jönsson P and Godefroid M 2011 J. Phys. B: At. Mol. Opt. Phys. 44 175003
[27] Torbohm G, Fricke B and Rosén A 1985 Phys. Rev. A 31 2038
[28] Chen M, Cheng K, Johnson W and Sapirstein J 1995 Phys. Rev. A 52 266
[29] Cheng K, Chen M and Sapirstein J 2000 Phys. Rev. A 62 054501
[30] Yerokhin V, Artemyev A, Shabaev V, Sysak M, Zherebtsov O and Soff G 2001 Phys. Rev. A 64 032109
[31] Blundell S A 1993 Phys. Rev. A 47 1790
[32] Sapirstein J and Cheng K 2011 Phys. Rev. A 83 012504
[33] Zhang H L, Sampson D H and Fontes C J 1990 Atomic Data and Nuclear Data Tables 44 31
[34] Beiersdorfer P, Osterheld A, Elliott S, Chen M, Knapp D and Reed K 1995 Phys. Rev. A 52 2693
[35] Ekman J, Jönsson P, Godefroid M, Nazé C, Gaigalas G and Bieroń J 2019 Comput. Phys. Commun. 235 433
[36] Kozhedub Y, Volotka A, Artemyev A, Glazov D, Plunien G, Shabaev V, Tupitsyn I and Stöhlker T 2010 Phys. Rev. A 81 042513
[37] Berengut J C, Flambaum V V and Kozlov M G 2005 Phys. Rev. A 72 044501
[38] Zubova N A, Malyshev A V, Tupitsyn I I, Shabaev V M, Kozhedub Y S, Plunien G, Brandau C and Stöhlker T 2016 Phys. Rev. A 93 052502
[39] Angeli I and Marinova K P 2013 Atomic Data and Nuclear Data Tables 99 69
[1] Isotope shift of the 2s 2S1/2 2p 2P1/2,3/2 transitions of Li-like Ca ions
Denghong Zhang(张登红), Fangjun Zhang(张芳军), Xiaobin Ding(丁晓彬), and Chenzhong Dong(董晨钟). Chin. Phys. B, 2021, 30(4): 043102.
[2] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
[3] Finite-field calculation of electric quadrupole moments of 2P3/2, 2D3/2,5/2, and 2F5/2,7/2 states for Yb+ ion
Xi-Tong Guo(郭希同), Yan-Mei Yu(于艳梅), Yong Liu(刘永), Bing-Bing Suo(索兵兵). Chin. Phys. B, 2020, 29(5): 053101.
[4] Forbidden transition properties of fine-structure 2p3 4S3/2-2p3 2D3/2,5/2 for nitrogen-like ions
Xiao-Kang He(何晓康), Jian-Peng Liu(刘建鹏), Xiang Zhang(张祥), Yong Shen(沈咏), Hong-Xin Zou(邹宏新). Chin. Phys. B, 2018, 27(8): 083102.
[5] Uncertainty evaluation of the isotope shift factors for 2s2p3,1P1o-2s21S0 transitions in B II
Jianpeng Liu(刘建鹏), Jiguang Li(李冀光), Hongxin Zou(邹宏新). Chin. Phys. B, 2017, 26(2): 023104.
[6] Theoretical investigation on forbidden transition properties of fine-structure splitting in 2D state for K-like ions with 26 ≤ Z ≤ 36
Jian-Peng Liu(刘建鹏), Cheng-Bin Li(李承斌), Hong-Xin Zou(邹宏新). Chin. Phys. B, 2017, 26(10): 103201.
[7] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
[8] Isotope shift calculations for D lines of stable and short-lived lithium nuclei
Geng-Hua Yu(余庚华), Peng-Yi Zhao(赵朋义), Bing-Ming Xu(徐炳明), Wei Yang(杨维), Xiao-Ling Zhu(朱晓玲). Chin. Phys. B, 2016, 25(11): 113102.
[9] Weak- and hyperfine-interaction-induced 1s2s 1S0→1s2 1S0 E1 transition rates of He-like ions
Laima Radžiūtė, Erikas Gaidamauskas, Gediminas Gaigalas, Li Ji-Guang (李冀光), Dong Chen-Zhong (董晨钟), Per Jönsson. Chin. Phys. B, 2015, 24(4): 043103.
[10] A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition
Wang Wen-Li(王文丽) and Xu Xin-Ye(徐信业). Chin. Phys. B, 2010, 19(12): 123202.
[11] Isotopic effect of Cl2+ rovibronic spectra in the A-X system
Wu Ling(吴玲), Yang Xiao-Hua(杨晓华), and Chen Yang-Qin(陈扬骎). Chin. Phys. B, 2009, 18(7): 2724-2728.
[12] Measurement of hyperfine structure and isotope shifts in the 580.56nm line of 142-145,146,148,150Nd+
Ma Hong-Liang (马洪良). Chin. Phys. B, 2005, 14(3): 511-515.
No Suggested Reading articles found!