Isotope shifts due to the 1s22s 2S1/2 → 1s22p 2P1/2,3/2 transitions of Li-like Th87+ ions
Huqiang Lu(路虎强)1, Bingbing Li(李兵兵)1, Mingye Yang(杨明叶)3, Lin Dong(董霖)1, Yanmin Wang(王雁敏)1, Maijuan Li(李麦娟)1, Lei Wu(吴磊)1, Jiguang Li(李冀光)3,†, Jun Jiang(蒋军)1,‡, Chenzhong Dong(董晨钟)1, and Denghong Zhang(张登红)1,2,§
1 Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 2 Department of Physics, Tianshui Normal University, Tianshui 741000, China; 3 High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract The transition energies of the 1ss S 1sp P transitions in Li-like Th ions were calculated by combining the multi-configuration Dirac-Hartree-Fock (MCDHF) method with the model-quantum electrodynamics (model-QED) approach. The effects of electron correlation, Breit interaction, and QED effects were analyzed in detail. The isotope shifts, including the mass shifts and field shifts, due to the 2s S 2p P transitions were then calculated using two different methods, namely, the MCDHF method and the finite-field method. The results show that these two methods are in excellent agreement.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant Nos. 1236040286, 12474250, 12174316, 12464036, and 12404306), the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University (Grant No. NWNU-LKQN2020-10), and the Funds for Innovative Fundamental Research Group Project of Gansu Province (Grant No. 20JR5RA541).
Corresponding Authors:
Jiguang Li, Jun Jiang, Denghong Zhang
E-mail: li_jiguang@iapcm.ac.cn;jiangjun@nwnu.edu.cn;zhangdh@nwnu.edu.cn
Cite this article:
Huqiang Lu(路虎强), Bingbing Li(李兵兵), Mingye Yang(杨明叶), Lin Dong(董霖), Yanmin Wang(王雁敏), Maijuan Li(李麦娟), Lei Wu(吴磊), Jiguang Li(李冀光), Jun Jiang(蒋军), Chenzhong Dong(董晨钟), and Denghong Zhang(张登红) Isotope shifts due to the 1s22s 2S1/2 → 1s22p 2P1/2,3/2 transitions of Li-like Th87+ ions 2025 Chin. Phys. B 34 073203
[1] Zubova N, Anisimova I, Kaygorodov M Y, Kozhedub Y S, Malyshev A, Shabaev V, Tupitsyn I, Plunien G, Brandau C and Stöhlker T 2019 J. Phys. B: At. Mol. Opt. Phys. 52 185001 [2] Orts R S, Harman Z, López-Urrutia J C, Artemyev A N, Bruhns H, Martínez A G, Jentschura U D, Keitel C H, Lapierre A, Mironov V, et al. 2006 Phys. Rev. Lett. 97 103002 [3] Brandau C, Kozhuharov C, Harman Z, Müller A, Schippers S, Kozhedub Y, Bernhardt D, Böhm S, Jacobi J, Schmidt E W, et al. 2008 Phys. Rev. Lett. 100 073201 [4] Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S, Borovik Jr A, Gwinner G, Villari A, Ralchenko Y, Takacs E, et al. 2018 Phys. Rev. A 98 052502 [5] Silwal R, Lapierre A, Gillaspy J, Dreiling J, Blundell S, Borovik Jr A, Gwinner G, Villari A, Ralchenko Y, Takacs E, et al. 2020 Phys. Rev. A 101 062512 [6] Hosier A, Blundell S, Silwal R, Lapierre A, Gillaspy J, Gwinner G, Tan J, Kwiatkowski A, Wang Y, Staiger H, et al. 2024 J. Phys. B: At. Mol. Opt. Phys. 57 195001 [7] Scharl K, Ding S, Holthoff G, Hussain M I, Kraemer S, Löbell L, Moritz D, Rozibakieva T, Seiferle B, Zacherl F, et al. 2023 Atoms 11 108 [8] Kraemer S, Chhetri P, Bara S, Claessens A, De Witte H, Elskens Y, Ferrer R, Kudryavtsev Y, Sels S, Van Den Bergh P, et al. 2023 Nucl. Instr. Meth. in Phys. Res. B 542 1 [9] Beloy K 2023 Phys. Rev. Lett. 130 103201 [10] Yamaguchi A, Shigekawa Y, Haba H, Wada M and Katori H 2024 J. Phys. Conf. Ser. 2889 012041 [11] Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G A, Li P, Thirolf P G, et al. 2024 Nature 633 63 [12] Yamaguchi A, Shigekawa Y, Haba H, Kikunaga H, Shirasaki K, Wada M and Katori H 2024 Nature 629 62 [13] Zubova N, Kozhedub Y, Shabaev V, Tupitsyn I, Volotka A, Plunien G, Brandau C and Stöhlker T 2014 Phys. Rev. A 90 062512 [14] Li J, Nazé C, Godefroid M, Fritzsche S, Gaigalas G, Indelicato P and Jönsson P 2012 Phys. Rev. A 86 022518 [15] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184 [16] Jönsson P, Gaigalas G, Fischer C F, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J, et al. 2023 Atoms 11 68 [17] Li B B, Jiang J, Wu L, Zhang R K, Li X J and Dong C Z 2024 J. Phys. B: At. Mol. Opt. Phys. 57 115003 [18] Shabaev V, Tupitsyn I and Yerokhin V 2015 Comput. Phys. Commun. 189 175 [19] Shabaev V, Tupitsyn I and Yerokhin V 2013 Phys. Rev. A 88 012513 [20] Grant I P 2007 Relativistic quantum theory of atoms and molecules: theory and computation (Springer) [21] Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004 [22] Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W, Li J, Brage T, Grant I P, Bieroń J, et al. 2022 Atoms 11 7 [23] Palmer C 1987 J. Phys. B: At. Mol. Opt. Phys. 20 5987 [24] Shabaev V and Artemyev A 1994 J. Phys. B: At. Mol. Opt. Phys. 27 1307 [25] Shabaev V 1998 Phys. Rev. A 57 59 [26] Gaidamauskas E, Nazé C, Rynkun P, Gaigalas G, Jönsson P and Godefroid M 2011 J. Phys. B: At. Mol. Opt. Phys. 44 175003 [27] Torbohm G, Fricke B and Rosén A 1985 Phys. Rev. A 31 2038 [28] Chen M, Cheng K, Johnson W and Sapirstein J 1995 Phys. Rev. A 52 266 [29] Cheng K, Chen M and Sapirstein J 2000 Phys. Rev. A 62 054501 [30] Yerokhin V, Artemyev A, Shabaev V, Sysak M, Zherebtsov O and Soff G 2001 Phys. Rev. A 64 032109 [31] Blundell S A 1993 Phys. Rev. A 47 1790 [32] Sapirstein J and Cheng K 2011 Phys. Rev. A 83 012504 [33] Zhang H L, Sampson D H and Fontes C J 1990 Atomic Data and Nuclear Data Tables 44 31 [34] Beiersdorfer P, Osterheld A, Elliott S, Chen M, Knapp D and Reed K 1995 Phys. Rev. A 52 2693 [35] Ekman J, Jönsson P, Godefroid M, Nazé C, Gaigalas G and Bieroń J 2019 Comput. Phys. Commun. 235 433 [36] Kozhedub Y, Volotka A, Artemyev A, Glazov D, Plunien G, Shabaev V, Tupitsyn I and Stöhlker T 2010 Phys. Rev. A 81 042513 [37] Berengut J C, Flambaum V V and Kozlov M G 2005 Phys. Rev. A 72 044501 [38] Zubova N A, Malyshev A V, Tupitsyn I I, Shabaev V M, Kozhedub Y S, Plunien G, Brandau C and Stöhlker T 2016 Phys. Rev. A 93 052502 [39] Angeli I and Marinova K P 2013 Atomic Data and Nuclear Data Tables 99 69
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.