|
|
Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay |
Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙), Wei Feng(冯伟), Sheng-Peng Zhou(周胜鹏), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深)†, and Jing Guo(郭静)‡ |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract We present the photoelectron momentum distributions (PMDs) and the photoelectron angular distributions (PADs) of He+ ions, aligned H2+ molecules and N2 molecules by intense orthogonally polarized laser pulses. Simulations are performed by numerically solving the corresponding two-dimensional time-dependent Schrödinger equations (TDSEs) within the single-electron approximation frame. Photoelectron momentum distributions and photoelectron angular distributions present different patterns with the time delays T d, illustrating the dependences of the PMDs and PADs on the time delays by orthogonally polarized laser pulses. The evolution of the electron wavepackets can be employed to describe the intensity of the PADs from the TDSE simulations for N2 molecules.
|
Received: 02 July 2020
Revised: 13 August 2020
Accepted manuscript online: 27 August 2020
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074146, 21827805, 11974007, and 12074142) and the Natural Science Foundation of Jilin Province of China (Grant No. 20180101225JC). |
Corresponding Authors:
†Corresponding author. E-mail: gjing@jlu.edu.cn ‡Corresponding author. E-mail: liuxs@jlu.edu.cn
|
Cite this article:
Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙), Wei Feng(冯伟), Sheng-Peng Zhou(周胜鹏), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静) Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay 2021 Chin. Phys. B 30 013201
|
1 Zhang J, Qi T, Pan X F, Guo J, Zhu K G and Liu X S 2019 Chin. Phys. B 28 103204 2 Shao J, Zhang C P, Jia J C, Ma J L and Miao X Y 2019 Chin. Phys. Lett. 36 054203 3 Taylor J E, Zhang Z, Cao G, Haber L H, Jin R and Plummer E W 2018 Chin. Phys. Lett. 35 097102 4 Xu T T, Chen J H, Pan X F, Zhang H D, Ben S and Liu X S 2018 Chin. Phys. B 27 093201 5 Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545 6 Agostini P and DiMauro L F 2004 Rep. Prog. Phys. 67 813 7 Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 8 von den Hoff P, Znakovskaya I, Kling M F and de Vivie-Riedle R 2009 Chem. Phys. 366 139 9 Corkum P B and Krausz F 2007 Nat. Phys. 3 381 10 Shao H C and Starace A F 2010 Phys. Rev. Lett. 105 263201 11 Hockett P, Bisgaard C Z, Clarkin O J and Stolow A 2011 Nat. Phys. 7 612 12 Niikura H, Villeneuve D M and Corkum P B 2005 Phys. Rev. Lett. 94 083003 13 Shao H C and Starace A F 2010 Phys. Rev. Lett. 105 263201 14 Bandrauk A D, Chelkowski S and Nguyen H S 2004 Int. J. Quantum Chem. 100 834 15 Chelkowski S, Yudin G L and Bandrauk A D 2006 J. Phys. B 39 S409 16 Djiokap J N, Meremianin A, Manakov N, Madsen L and Hu S and Starace A 2018 Phys. Rev. A 98 063407 17 Djiokap J N, Meremianin A, Manakov N, Hu S, Madsen L and Starace A 2016 Phys. Rev. A 94 013408 18 Yuan K J, Chelkowski S and Bandrauk A D 2016 Phys. Rev. A 93 053425 19 Djiokap J N, Hu S, Madsen L B, Manakov N, Meremianin A and Starace A F 2015 Phys. Rev. Lett. 115 113004 20 Yuan K J, Lu H and Bandrauk A D 2017 Struct. Chem. 28 1297 21 Yuan K J, Chelkowski S and Bandrauk A D 2015 Chem. Phys. Lett. 638 173 22 Richter M, Kunitski M, Schöffler M, Jahnke T, Schmidt L P H, Li M, Liu Y and Dörner R 2015 Phys. Rev. Lett. 114 143001 23 Li M, Jiang W C, Xie H, Luo S, Zhou Y and Lu P 2018 Phys. Rev. A 97 023415 24 Yuan K J, Chelkowski S and Bandrauk A D 2017 Chem. Phys. Lett. 683 639 25 Zuo T, Bandrauk A D and Corkum P B 1996 Chem. Phys. Lett. 259 313 26 Peters M, Nguyen-Dang T, Charron E, Keller A and Atabek O 2012 Phys. Rev. A 85 053417 27 Bandrauk A D and Shen H 1993 J. Chem. Phys. 99 1185 28 Bandrauk A D and Lu H 2013 J. Theor. Comput. Chem. 12 1340001 29 Zhang H D, Ben S, Xu T T, Song K L, Tian Y R, Xu Q Y, Zhang S Q, Guo J and Liu X S 2018 Phys. Rev. A 98 013422 30 Peters M, Nguyen-Dang T T, Cornaggia C, Saugout S, Charron E, Keller A and Atabek O 2011 Phys. Rev. A 83 051403 31 Zhu X, Liu X, Li Y, Qin M, Zhang Q, Lan P and Lu P 2015 Phys. Rev. A 91 043418 32 Odenweller M, Takemoto N, Vredenborg A, Cole K, Pahl K, Titze J, Schmidt L P H, Jahnke T, Dörner R and Becker A 2011 Phys. Rev. Lett. 107 143004 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|