Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 073201    DOI: 10.1088/1674-1056/add1ba
Special Issue: SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
TOPICAL REVIEW — Ultrafast physics in atomic, molecular and optical systems Prev   Next  

Theory and applications of attosecond transient absorption spectroscopy: From atoms to solids

Ennan Cui1,2 and Difa Ye(叶地发)1,†
1 National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Graduate School, China Academy of Engineering Physics, Beijing 100193, China
Abstract  This review comprehensively explores the theory and applications of attosecond transient absorption spectroscopy (ATAS) in studying ultrafast electronic dynamics across various systems, from atoms to solids. Driven by significant advancements in ultrafast laser technology, such as generating isolated attosecond pulses, ATAS enables detailed investigations of ultrafast electronic processes with unprecedented time resolution. The article introduces the fundamental principles and historical development of ATAS. Applications of ATAS are discussed in three main domains: in atoms, where it has been used to study build-up dynamics of Autler-Townes splitting, Fano resonance, light-induced states, etc.; in molecules, where it has revealed coherent molecular wavepacket dynamics and non-adiabatic dynamics near conical intersections; and in solids, where it has been extended to investigate ultrafast charge carrier dynamics in metals, semiconductors, and insulators. The review highlights the potential of ATAS in developing ultrafast optical switches and petahertz electronics. The ability of ATAS to probe and manipulate electronic dynamics at the attosecond timescale provides a powerful tool for exploring the fundamental limits of electronic and optical processes in materials.
Keywords:  attosecond transient absorption spectroscopy      response time      causality      petahertz electronics  
Received:  03 March 2025      Revised:  22 April 2025      Accepted manuscript online:  29 April 2025
PACS:  32.30.-r (Atomic spectra?)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  32.80.-t (Photoionization and excitation)  
  31.15.A- (Ab initio calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174034).
Corresponding Authors:  Difa Ye     E-mail:  ye_difa@iapcm.ac.cn

Cite this article: 

Ennan Cui and Difa Ye(叶地发) Theory and applications of attosecond transient absorption spectroscopy: From atoms to solids 2025 Chin. Phys. B 34 073201

[1] Strickland D and Mourou G 1985 Opt. Commun. 56 219
[2] Mourou G 2019 Rev. Mod. Phys. 91 030501
[3] Strickland D 2019 Rev. Mod. Phys. 91 030502
[4] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G and Agostini P 2001 Science 292 1689
[5] Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[6] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[7] Agostini P 2024 Rev. Mod. Phys. 96 030501
[8] Krausz F 2024 Rev. Mod. Phys. 96 030502
[9] L’Huillier A 2024 Rev. Mod. Phys. 96 030503
[10] Gallmann L, Herrmann J, Locher R, Sabbar M, Ludwig A, Lucchini M and Keller U 2013 Mol. Phys. 111 2243
[11] Wu M, Chen S, Camp S, Schafer K J and Gaarde M B 2016 J. Phys. B: At. Mol. Opt. Phys. 49 062003
[12] Geneaux R, Marroux H J B, Guggenmos A, Neumark D M and Leone S R 2019 Phil. Trans. R. Soc. A 377 20170463
[13] Palacios A and Martín F 2020 WIREs Comput. Mol. Sci. 10 e1430
[14] Biegert J, Calegari F, Dudovich N, Quéré F and Vrakking M 2021 J. Phys. B: At. Mol. Opt. Phys. 54 070201
[15] Borrego-Varillas R, Lucchini M and Nisoli M 2022 Rep. Prog. Phys. 85 066401
[16] Hu S and Meng S 2023 Chin. Phys. Lett. 40 117801
[17] Zong A, Nebgen B R, Lin S C, Spies J A and Zuerch M 2023 Nat. Rev. Mater. 8 224
[18] Di Palo N, Inzani G, Dolso G L, Talarico M, Bonetti S and Lucchini M 2024 APL Photonics 9 020901
[19] Gaarde M B, Buth C, Tate J L and Schafer K J 2011 Phys. Rev. A 83 013419
[20] Stenquist A, Zapata F and Dahlström J M 2023 Phys. Rev. A 107 053106
[21] Argenti L, Jimeńez-Galań Á, Marante C, Ott C, Pfeifer T and Martín F 2015 Phys. Rev. A 91 061403
[22] Petersson C L M, Argenti L and Martín F 2017 Phys. Rev. A 96 013403
[23] Colgan J, Pindzola M S and Robicheaux F 2004 Phys. Rev. Lett. 93 053201
[24] Colgan J and Pindzola M S 2012 Phys. Rev. Lett. 108 053001
[25] Colgan J, Emmanouilidou A and Pindzola M S 2013 Phys. Rev. Lett. 110 063001
[26] Bækhøj J E, Yue L and Madsen L B 2015 Phys. Rev. A 91 043408
[27] Chen S, Wu M, Gaarde M B and Schafer K J 2013 Phys. Rev. A 87 033408
[28] Murakami M and Chu S I 2013 Phys. Rev. A 88 043428
[29] Chini M, Wang X, Cheng Y and Chang Z 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124009
[30] Dong W, Li Y, Wang X, Yuan J and Zhao Z 2015 Phys. Rev. A 92 033412
[31] Zhao H, Liu C, Zheng Y, Zeng Z and Li R 2017 Opt. Express 25 7707
[32] Yuan G, Jiang S, Wang Z, Hua W, Yu C, Jin C and Lu R 2019 Struct. Dyn. 6 054102
[33] Chu W C and Lin C D 2010 Phys. Rev. A 82 053415
[34] Chu W C, Zhao S F and Lin C D 2011 Phys. Rev. A 84 033426
[35] Pfeiffer A N and Leone S R 2012 Phys. Rev. A 85 053422
[36] Wu M, Chen S, Gaarde M B and Schafer K J 2013 Phys. Rev. A 88 043416
[37] Mi K, Cao W, Xu H, Mo Y, Yang Z, Lan P, Zhang Q and Lu P 2020 Phys. Rev. Appl. 13 014032
[38] He Y, Liu Z, Ott C, Pfeiffer A N, Sun S, Gaarde M B, Pfeifer T and Hu B 2022 Phys. Rev. Lett. 129 273201
[39] Fu Y, Wang B, Wang K, Tang X, Li B, Yin Z, Han J, Lin C D and Jin C 2024 Proc. Natl. Acad. Sci. USA 121 e2307836121
[40] Vrakking M J J and Lepine F 2018 Attosecond Molecular Dynamics (Cambridge: The Royal Society of Chemistry)
[41] Wang H, Odelius M and Prendergast D 2019 J. Chem. Phys. 151 124106
[42] Zettergren H, Domaracka A, Schlathölter T, et al. 2021 Eur. Phys. J. D 75 152
[43] Alexander O G, Marangos J P, Ruberti M and Vacher M 2023 Advances In Atomic, Molecular, and Optical Physics vol. 72, Ed. by L F DiMauro, H Perrin and S F Yelin (Academic Press) pp. 183—251
[44] Casperson L W 1998 Phys. Rev. A 57 609
[45] Mashiko H, Oguri K, Yamaguchi T, Suda A and Gotoh H 2016 Nat. Phys. 12 741
[46] Cistaro G, Plaja L, Martín F and Picón A 2021 Phys. Rev. Res. 3 013144
[47] Cavaletto S M and Madsen L B 2024 Phys. Rev. A 110 053111
[48] Cavaletto S M, Kowalczyk K M, Navarrete F O and Rivera-Dean J 2025 Nat. Rev. Phys. 7 38
[49] Dong F and Liu J 2022 Phys. Rev. A 106 063107
[50] Castro A, Marques M A L and Rubio A 2004 J. Chem. Phys. 121 3425
[51] Andrade X, Strubbe D, De Giovannini U, Larsen A H, Oliveira M J T, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques M A L and Rubio A 2015 Phys. Chem. Chem. Phys. 17 31371
[52] Tong X M and Chu S I 2001 Phys. Rev. A 64 013417
[53] Otobe T, Yabana K and Iwata J I 2004 Phys. Rev. A 69 053404
[54] Gao C Z, Dinh P M, Reinhard P G and Suraud E 2017 Phys. Chem. Chem. Phys. 19 19784
[55] Moitra T, Konecny L, Kadek M, Rubio A and Repisky M 2023 J. Phys. Chem. Lett. 14 1714
[56] Chen M and Lopata K 2020 J. Chem. Theory Comput. 16 4470
[57] Sato S A, Hübener H, De Giovannini U and Rubio A 2018 Appl. Sci. 8 1777
[58] Boolakee T, Heide C, Garzón-Ramírez A, Weber H B, Franco I and Hommelhoff P 2022 Nature 605 251
[59] Pfeiffer A N, Bell M J, Beck A R, Mashiko H, Neumark D M and Leone S R 2013 Phys. Rev. A 88 051402
[60] Lin C D, Le A T, Jin C and Wei H 2018 Attosecond and Strong-Field Physics: Principles and Applications (Cambridge: Cambridge University Press)
[61] Santra R, Yakovlev V S, Pfeifer T and Loh Z H 2011 Phys. Rev. A 83 033405
[62] Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R and Krausz F 2010 Nature 466 739
[63] Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U and Chang Z 2010 Phys. Rev. Lett. 105 143002
[64] Holler M, Schapper F, Gallmann L and Keller U 2011 Phys. Rev. Lett. 106 123601
[65] Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F and Pfeifer T 2014 Nature 516 374
[66] Chini M, Wang X, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S I and Chang Z 2013 Sci. Rep. 3 1105
[67] Yang Z Q, Ye D F, Ding T, Pfeifer T and Fu L B 2015 Phys. Rev. A 91 013414
[68] Sabbar M, Timmers H, Chen Y J, Pymer A K, Loh Z H, Sayres S G, Pabst S, Santra R and Leone S R 2017 Nat. Phys. 13 472
[69] Wang L, Bai G, Wang X, Zhao J, Gao C, Wang J, Xiao F, Tao W, Song P, Qiu Q, Liu J and Zhao Z 2024 Nat. Commun. 15 2705
[70] Lindberg M and Koch S W 1988 Phys. Rev. B 38 7607
[71] Yan S, Seidel M T and Tan H S 2011 Chem. Phys. Lett. 517 36
[72] Wang X, Chini M, Cheng Y,Wu Y, Tong X M and Chang Z 2013 Phys. Rev. A 87 063413
[73] Wu X, Yang Z, Zhang S, Ma X, Liu J and Ye D 2021 Phys. Rev. A 103 L061102
[74] Xie Q, Zhong H, Batchelor M T and Lee C 2017 J. Phys. A: Math. Theor. 50 113001
[75] Reduzzi M, Hummert J, Dubrouil A, Calegari F, Nisoli M, Frassetto F, Poletto L, Chen S,Wu M, Gaarde M B, Schafer K and Sansone G 2015 Phys. Rev. A 92 033408
[76] Becker P C, Fork R L, Brito Cruz C H, Gordon J P and Shank C V 1988 Phys. Rev. Lett. 60 2462
[77] Wu X, Zhang S and Ye D 2021 J. Phys. B: At. Mol. Opt. Phys. 54 205602
[78] Chu W C and Lin C D 2012 Phys. Rev. A 85 013409
[79] Chu W C and Lin C D 2013 Phys. Rev. A 87 013415
[80] Anand M, Pabst S, Kwon O and Kim D E 2017 Phys. Rev. A 95 053420
[81] Rørstad J J, Ravn N S W, Yue L and Madsen L B 2018 Phys. Rev. A 98 053401
[82] Herrmann J, Lucchini M, Chen S,Wu M, Ludwig A, Kasmi L, Schafer K J, Gallmann L, Gaarde M B and Keller U 2015 New J. Phys. 17 013007
[83] Géneaux R, Kaplan C J, Yue L, Ross A D, Bækhøj J E, Kraus P M, Chang H T, Guggenmos A, Huang M Y, Zürch M, Schafer K J, Neumark D M, Gaarde M B and Leone S R 2020 Phys. Rev. Lett. 124 207401
[84] Jackson J D 1999 Classical Electrodynamics, 3rd edn. (New York: Wiley) pp. 330-339
[85] Boyd R W and Gauthier D J 2009 Science 326 1074
[86] Leone S R, McCurdy C W, Burgdörfer J, Cederbaum L S, Chang Z, Dudovich N, Feist J, Greene C H, Ivanov M, Kienberger R, Keller U, Kling M F, Loh Z H, Pfeifer T, Pfeiffer A N, Santra R, Schafer K, Stolow A, Thumm U and Vrakking M J J 2014 Nat. Photon. 8 162
[87] Sabbar M, Timmers H, Chen Y J, Pymer A K, Loh Z H, Sayres S G, Pabst S, Santra R and Leone S R 2017 Nat. Phys. 13 472
[88] Peng P, Marceau C, Hervé M, Corkum P B, Naumov A Yu and Villeneuve D M 2019 Nat. Commun. 10 5269
[89] Tsen K T 2004 Ultrafast Dynamical Processes in Semiconductors, (Heidelberg: Springer Berlin) pp. 10-13
[90] Zewail A H 1988 Science 242 1645
[91] Pestov D, Murawski R K, Ariunbold G O, Wang X, Zhi M, Sokolov A V, Sautenkov V A, Rostovtsev Y V, Dogariu A, Huang Y and Scully M O 2007 Science 316 265
[92] Yang Y, Yang M, Zhu K, Johnson J C, Berry J J, van de Lagemaat J and Beard M C 2016 Nat. Commun. 7 12613
[93] Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S and Schultze M 2019 Nature 571 240
[94] Li X, Bernhardt B, Beck A R, Warrick E R, Pfeiffer A N, Justine Bell M, Haxton D J, McCurdy C W, Neumark D M and Leone S R 2015 J. Phys. B: At. Mol. Opt. Phys. 48 125601
[95] Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H and Pfeifer T 2013 Science 340 716
[96] Blättermann A, Ott C, Kaldun A, Ding T and Pfeifer T 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124008
[97] Stooß V, Cavaletto S M, Donsa S, Blättermann A, Birk P, Keitel C H, Brezinová I, Burgdörfer J, Ott C and Pfeifer T 2018 Phys. Rev. Lett. 121 173005
[98] Wu X, Zhang L, Zhang S and Ye D 2021 Phys. Rev. A 104 063121
[99] Heldt T, Dubois J, Birk P, Borisova G D, Lando G M, Ott C and Pfeifer T 2023 Phys. Rev. Lett. 130 183201
[100] Cheng Y, Chini M,Wang X, González-Castrillo A, Palacios A, Argenti L, Martín F and Chang Z 2016 Phys. Rev. A 94 023403
[101] Saito N, Sannohe H, Ishii N, Kanai T, Kosugi N, Wu Y, Chew A, Han S, Chang Z and Itatani J 2019 Optica 6 1542
[102] Poullain S M, Kobayashi Y, Chang K F and Leone S R 2021 Phys. Rev. A 104 022817
[103] Bækhøj J E, Lévêque C and Madsen L B 2018 Phys. Rev. Lett. 121 023203
[104] Kobayashi Y, Chang K F, Zeng T, Neumark D M and Leone S R 2019 Science 365 79
[105] Timmers H, Zhu X, Li Z, Kobayashi Y, Sabbar M, Hollstein M, Reduzzi M, Martínez T J, Neumark D M and Leone S R 2019 Nat. Commun. 10 3133
[106] Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M and Leone S R 2020 Nat. Commun. 11 4042
[107] Chang K F, Wang H, Poullain S M, Prendergast D, Neumark D M and Leone S R 2021 J. Chem. Phys. 154 234301
[108] Chang K F, Wang H, Poullain S M, González-Vázquez J, Bañares L, Prendergast D, Neumark D M and Leone S R 2022 J. Chem. Phys. 156 114304
[109] Matselyukh D T, Despré V, Golubev N V, Kuleff A I and Wörner H J 2022 Nat. Phys. 18 1206
[110] Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S andWörner H J 2021 Science 371 489
[111] Chang Y P, Balciunas T, Yin Z, Sapunar M, Tenorio B N C, Paul A C, Tsuru S, Koch H, Wolf J P, Coriani S and Wörner H J 2025 Nat. Phys. 21 137
[112] Novelli F, Fausti D, Giusti F, Parmigiani F and Hoffmann M 2013 Sci. Rep. 3 1227
[113] Shah J 1996 Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (New York: Springer Berlin)
[114] Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I and Krausz F 2013 Nature 493 75
[115] Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M and Leone S R 2014 Science 346 1348
[116] Reiss H R 2008 Phys. Rev. Lett. 101 043002
[117] Ludwig A, Maurer J, Mayer BW, Phillips C R, Gallmann L and Keller U 2014 Phys. Rev. Lett. 113 243001
[118] Kruchinin S Yu, Krausz F and Yakovlev V S 2018 Rev. Mod. Phys. 90 021002
[119] Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L and Keller U 2016 Science 353 916
[120] Lucchini M, Sato S A, Schlaepfer F, Yabana K, Gallmann L, Rubio A and Keller U 2020 J. Phys. Photon. 2 025001
[121] Otobe T, Shinohara Y, Sato S A and Yabana K 2016 Phys. Rev. B 93 045124
[122] Volkov M, Sato S A, Niedermayr A, Rubio A, Gallmann L and Keller U 2023 Phys. Rev. B 107 184304
[123] Volkov M, Sato S A, Schlaepfer F, Kasmi L, Hartmann N, Lucchini M, Gallmann L, Rubio A and Keller U 2019 Nat. Phys. 15 1145
[124] Schlaepfer F, Lucchini M, Sato S A, Volkov M, Kasmi L, Hartmann N, Rubio A, Gallmann L and Keller U 2018 Nat. Phys. 14 560
[125] Chakraborty P S, Cardoso A S, Wier B R, Omprakash A P, Cressler J D, Kaynak M and Tillack B 2014 IEEE Electron Device Lett. 35 151
[126] Mashiko H, Chisuga Y, Katayama I, Oguri K, Masuda H, Takeda J and Gotoh H 2018 Nat. Commun. 9 1468
[127] Ossiander M, Golyari K, Scharl K, Lehnert L, Siegrist F, Bürger J P, Zimin D, Gessner J A, Weidman M, Floss I, Smejkal V, Donsa S, Lemell C, Libisch F, Karpowicz N, Burgdörfer J, Krausz F and Schultze M 2022 Nat. Commun. 13 1620
[128] Zinchenko K S, Ardana-Lamas F, Lanfaloni V U, Luu T T, Pertot Y, Huppert M and Wörner H J 2023 Sci. Rep. 13 3059
[129] Li S, Lu L, Bhattacharyya S, et al. 2024 Science 383 1118
[130] Inzani G, Adamska L, Eskandari-asl A, Di Palo N, Dolso G L, Moio B, D’Onofrio L J, Lamperti A, Molle A, Borrego-Varillas R, Nisoli M, Pittalis S, Rozzi C A, Avella A and Lucchini M 2023 Nat. Photon. 17 1059
[131] Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S and Schultze M 2019 Nature 571 240
[132] Kim Y 2024 npj Quantum Materials 9 86
[133] Mosquera J F P, Cistaro G, Malakhov M, Pisanty E, Dauphin A, Plaja L, Chacón A, Lewenstein M and Picón A 2024 Rep. Prog. Phys. 87 117901
[134] Valmispild V N, Gorelov E, Eckstein M, Lichtenstein A I, Aoki H, Katsnelson M I, Ivanov M Y and Smirnova O 2023 Nat. Photon. 18 432
[1] Causally enhanced initial conditions: A novel soft constraints strategy for physics informed neural networks
Wenshu Zha(查文舒), Dongsheng Chen(陈东升), Daolun Li(李道伦), Luhang Shen(沈路航), and Enyuan Chen(陈恩源). Chin. Phys. B, 2025, 34(4): 040701.
[2] TCAS-PINN: Physics-informed neural networks with a novel temporal causality-based adaptive sampling method
Jia Guo(郭嘉), Haifeng Wang(王海峰), Shilin Gu(古仕林), and Chenping Hou(侯臣平). Chin. Phys. B, 2024, 33(5): 050701.
[3] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
[4] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[5] Numerical demonstration of three-dimensional terahertz metamaterials based on the causality principle
Saeid Jamilan, Javad Nourinia, Mohammad Naghi Azarmanesh. Chin. Phys. B, 2014, 23(2): 027804.
[6] Measuring causality by directional symbolic mutual information approach
Chen Gui (陈贵), Xie Lei (谢磊), Chu Jian (褚健). Chin. Phys. B, 2013, 22(3): 038902.
[7] The relation between Hardy's non-locality and violation of Bell inequality
Xiang Yang (向阳). Chin. Phys. B, 2011, 20(6): 060301.
[8] Tunable magneto–optic modulation based on magnetically responsive nanostructured magnetic fluid
Bai Xue-Kun(白学坤),Pu Sheng-Li(卜胜利), Wang Lun-Wei(王伦唯), Wang Xiang(王响), Yu Guo-Jun(于国君), and Ji Hong-Zhu(纪红柱) . Chin. Phys. B, 2011, 20(10): 107501.
[9] The simulation of temperature dependence of responsivity and response time for 6H-SiC UV photodetector
Zhang Yi-Men(张义门), Zhou Yong-Hua(周拥华), and Zhang Yu-Ming(张玉明). Chin. Phys. B, 2007, 16(5): 1276-1279.
No Suggested Reading articles found!