Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067702    DOI: 10.1088/1674-1056/adc36c
Special Issue: Featured Column — INSTRUMENTATION AND MEASUREMENT
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Positive and negative electrocaloric effects

Hongrui Xu(徐洪瑞)† and Jiping Huang(黄吉平)‡
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
Abstract  Electrocaloric effect has attracted considerable attention for providing an eco-friendly and energy-efficient alternative to traditional vapor-compression refrigerators. In this review, we introduce theoretical explanations of positive and negative electrocaloric effects along with their measurements. In particular, we review recent advancements in prototypes of electrocaloric refrigeration and present their current advantages and shortcomings. Finally, we discuss the potential applications of the electrocaloric effect such as clothing and metamaterials to provide insights into future research.
Keywords:  electrocaloric effect      refrigeration  
Received:  19 February 2025      Revised:  15 March 2025      Accepted manuscript online:  21 March 2025
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  07.20.-n (Thermal instruments and apparatus)  
  61.46.-w (Structure of nanoscale materials)  
Fund: We gratefully acknkwledge funding from the National Natural Science Foundation of China (Grant Nos. 12035004 and 12320101004) and the Innovation Program of the Shanghai Municipal Education Commission (Grant No. 2023ZKZD06).
Corresponding Authors:  Hongrui Xu, Jiping Huang     E-mail:  21210190019@m.fudan.edu.cn;jphuang@fudan.edu.cn

Cite this article: 

Hongrui Xu(徐洪瑞) and Jiping Huang(黄吉平) Positive and negative electrocaloric effects 2025 Chin. Phys. B 34 067702

[1] Kutnjak Z, Rozič B and Pirc R 2015 Electrocaloric Effect: Theory, Measurements, and Applications (John Wiley & Sons, Ltd)
[2] Yin R, Li J, Su X, Qin S, Yu C, Hou Y, Liu C, Su Y, Qiao L, Lookman T and Bai Y 2022 Adv. Func. Mat. 32 2108182
[3] Su X, Li J, Hou Y, Yin R, Li J, Qin S, Su Y, Qiao L, Liu C and Bai Y 2023 J. Mater. 9 289
[4] Ren J 2023 Chin. Phys. Lett. 40 090501
[5] Lou Q and Xia M G 2023 Chin. Phys. Lett. 40 094401
[6] Yuan J, Ruan H, Liu D, He J and Wang J 2023 Chin. Phys. Lett. 40 100502
[7] Gao J Z, Liu X,Wang J H and He J Z 2023 Chin. Phys. Lett. 40 117301
[8] Huang Q K L, Liu Y K, Cao P C, Zhu X F and Li Y 2023 Chin. Phys. Lett. 40 106601
[9] Yan S, Liu Y, Wang Z, Lan X, Wang Y and Ren J 2023 Chin. Phys. B 32 057802
[10] Li X, Lu S G, Chen X Z, Gu H, Qian X S and Zhang Q M 2013 J. Mater. Chem. C 1 23
[11] Correia T 2014 Eletrocaloric Materials: New Generation of Coolers (Springer)
[12] Pakhomov O V, Karmanenko S F, Semenov A A, Starkov A S and Es’kov A V 2010 Tech. Phys. 55 1155
[13] Kobenko P and Kurtschatov J Z 1930 Zeit. für Phys. 66 192
[14] Wiseman G G and Kuebler J K 1963 Phys. Rev. 131 2023
[15] Herchig R, Chang C M, Mani B K and Ponomareva I 2015 Sci. Rep. 5 17294
[16] Neese B, Chu B, Lu S G, Wang Y, Furman E and Zhang Q M 2008 Science 321 821
[17] Su X, Yin R, Hou Y, Li J, Li J, Qin S, Su Y, Qiao L, Liu C and Bai Y 2022 J. Eur. Ceram. Soc. 42 4917
[18] Wang Y D, Smullin S J, Sheridan M J, Wang Q, Eldershaw C and Schwartz D E 2015 Appl. Phys. Lett. 107 134103
[19] Zhang T, Qian X S, Gu H, Hou Y and Zhang Q M 2017 Appl. Phys. Lett. 110 243503
[20] Defay E, Faye R, Despesse G, Strozyk H, Sette D, Crossley S, Moya X and Mathur N D 2018 Nat. Commun. 9 1827
[21] Wang Y, Zhang Z, Usui T, Benedict M, Hirose S, Lee J, Kalb J and Schwartz D 2020 Science 370 129
[22] Torelló A, Lheritier P, Usui T, Nouchokgwe Y, Gérard M, Bouton O, Hirose S and Defay E 2020 Science 370 125
[23] Yang J and Hao X 2019 J. Am. Ceram. Soc. 102 6817
[24] Bai Y, Zheng G P and Shi S Q 2011 Mater. Res. Bull. 46 1866
[25] Lei C H and Liu Y 2022 Appl. Phys. Lett. 121 102902
[26] Grünebohm A, Ma Y B, Marathe M, Xu B X, Albe K, Kalcher C, Meyer K C, Shvartsman V V, Lupascu D C and Ederer C 2018 Energy Technol. 6 1491
[27] Geng W, Liu Y, Meng X, Bellaiche L, Scott J F, Dkhil B and Jiang A 2015 Adv. Mater. 27 3165
[28] Guzmán-Verri G G and Littlewood P B 2016 APL Mat. 4 064106
[29] Morozovska A N, Eliseev E A, Glinchuk M D, Shevliakova H V, Svechnikov G S, Silibin M V, Sysa A V, Yaremkevich A D, Morozovsky N V and Shvartsman V V 2019 Phys. Rev. Mater. 3 104414
[30] Ishii F and Odajima A 1987 Jpn. J. Appl. Phys. 26 1641
[31] Strukov B and Levanyuk A 1998 Ferroelectric Phenomena in Crystals: Physical Foundations (Springer Berlin Heidelberg)
[32] Ising E 1925 Zeit. Phys. 31 253
[33] Tamm I E 1979 Fundamentals of the theory of electricity (Mir Publishers)
[34] Mallick J, Manglam M K, Pradhan L K, Panda S K and Kar M 2022 J. Phys. Chem. Sol. 169 110844
[35] Landau L D and Khalatnikov I M 1954 Dok. Akad. Nauk SSSR 96 469 Landau L D and Khalatnikov I M 1954 Dok. Akad. Nauk SSSR 46 469
[36] Vanderbilt D and Cohen M H 2001 Phys. Rev. B 63 094108
[37] Wang Y L, Tagantsev A K, Damjanovic D, Setter N, Yarmarkin V K, Sokolov A I and Lukyanchuk I A 2007 J. Appl. Phys. 101 104115
[38] Lo V C 2003 J. Appl. Phys. 94 3353
[39] Morozovska A N, Fomichov Y M, Maksymovych P, Vysochanskii Y M and Eliseev E A 2018 Acta Mater. 160 109
[40] Zhang J, Hou X, Zhang Y, Tang G and Wang J 2021 Mater. Rep.: Energy 1 100050
[41] Gao R Z, Shi X M, Wang J and Huang H B 2022 J. Am. Ceram. Soc. 105 3689
[42] Shao C and Huang H 2025 Chin. Phys. B 34 027701
[43] Wu H H, Zhu J and Zhang T Y 2015 RSC Adv. 5 37476
[44] Feng X, Zhao Y, Wang Y, Xie Y, Han P, Li Y and Hao X 2024 Ceram. Int. 50 1788
[45] Gracia D, Lafuerza S, Blasco J and Evangelisti M 2023 APL Mater. 11 121101
[46] Zhao C, Huang Y, Wu X, Gao M, Lin T and Lin C 2024 J. Am. Ceram. Soc. 107 195
[47] Mischenko A S, Zhang Q, Scott J F, Whatmore R W and Mathur N D 2006 Science 311 1270
[48] Zhang J, Hou X and Wang J 2019 J. Phys. Condens. Matter 31 255402
[49] Chen Z Y, Su Y X, Zhou Z D, Lei L S and Yang C P 2016 AIP Adv. 6 055207
[50] Zou K, Shao C, Bai P, Zhang C, Yang Y, Guo R, Huang H, Luo W, Ma R, Cao Y, Sun A, Zhang G and Jiang S 2022 Nano Lett. 22 6560
[51] Morozovska A N, Pylypchuk O S, Ivanchenko S, Eliseev E A, Shevliakova H V, Korolevych L M, Yurchenko L P, Shyrokov O V, Morozovsky N V, Poroshin V N, Kutnjak Z and Vainberg V V 2024 Ceram. Int. 50 11743
[52] Huang H, Zhang G, Ma X, Liang D, Wang J, Liu Y, Wang Q and Chen L Q 2018 J. Am. Ceram. Soc. 101 1566
[53] Shevliakova H V, Morozovska A N, Morozosky N V, Svechnikov G S and Shvartsman V V 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 2445
[54] Yu Z, Hou X, Zheng S, Bin C and Wang J 2024 J. Appl. Phys. 135 164105
[55] Dul’kin, Evgeniy and Roth, Michael 2014 Eur. Phys. J. Appl. Phys. 68 31301
[56] Polinger V and Bersuker I B 2018 Phys. Rev. B 98 214102
[57] Hao X, Zhai J, Kong L and Xu Z 2014 Prog. Mater. Sci. 63 1
[58] Pirc R, Kutnjak Z, Blinc R and Zhang Q M 2011 J. Appl. Phys. 110 074113
[59] Guzmán-Verri G G, Littlewood P B and Varma C M 2013 Phys. Rev. B 88 134106
[60] Pirc R and Blinc R 1999 Phys. Rev. B 60 13470
[61] Marathe M, Grünebohm A, Nishimatsu T, Entel P and Ederer C 2016 Phys. Rev. B 93 054110
[62] Rozič B, Kosec M, Uršič H, Holc J, Malič B, Zhang Q M, Blinc R, Pirc R and Kutnjak Z 2011 J. Appl. Phys. 110 064118
[63] Novak N, Kutnjak Z and Pirc R 2013 Eur. Lett. 103 47001
[64] Liu Y, Scott J F and Dkhil B 2016 Appl. Phys. Rev. 3 031102
[65] Zhao Y, Xian F Z, Wang Q and Wang C M 2024 Ceram. Int. 50 5104
[66] Lu S, Rozič B, Zhang Q, Kutnjak Z, Li X, Furman E, Gorny L, Lin M, Malič B, Kosec M, Blinc R and Pirc R 2010 Appl. Phys. Lett. 97 064118
[67] Gill P, Moghadam T T and Ranjbar B 2010 JBT 21 167 PMCID: PMC2977967 PMID: 21119929
[68] Vales-Castro P, Faye R, Vellvehi M, Nouchokgwe Y, Perpiñà X, Caicedo J M, Jordà X, Roleder K, Kajewski D, Perez-Tomas A, Defay E and Catalan G 2021 Phys. Rev. B 103 054112
[69] Nair B, Usui T, Crossley S, Kurdi S, Guzmán-Verri G G, Moya X, Hirose S and Mathur N D 2019 Nature 575 468
[70] Kar-Narayan S, Crossley S, Moya X, Kovacova V, Abergel J, Bontempi A, Baier N, Defay E and Mathur N D 2013 Appl. Phys. Lett. 102 032903
[71] Crossley S, Usui T, Nair B, Kar-Narayan S, Moya X, Hirose S, Ando A and Mathur N D 2016 Appl. Phys. Lett. 108 032902
[72] Ponomareva I and Lisenkov S 2012 Phys. Rev. Lett. 108 167604
[73] Peräntie J, Hagberg J, Uusimäki A and Jantunen H 2010 Phys. Rev. B 82 134119
[74] Ma X, Chen M, Liu J M, Wu D and Yang Y 2023 Phys. Rev. B 107 184105
[75] Samantaray K S, Amin R, Rini E, Bhaumik I, Mekki A, Harrabi K and Sen S 2022 J. Alloys Compd. 903 163837
[76] Wu M, Zhu Q, Li J, Song D, Wu H, Guo M, Gao J, Bai Y, Feng Y, Pennycook S J and Lou X 2019 Appl. Phys. Lett. 114 142901
[77] Chen X, Shvartsman V V, Lupascu D C and Zhang Q M 2022 J. Appl. Phys. 132 240901
[78] Torelló A and Defay E 2022 Adv. Elec. Mater. 8 2101031
[79] NaiduMS, Kamaraju V 2013 High Voltage Engineering (MeGraw Hill Education (India) Private Limited)
[80] Zhang S, Deliyore-Ramírez J, Deng S, Nair B, Pesquera D, Jing Q, Vickers M E, Crossley S, Ghidini M, Guzmán-Verri G G, Moya X and Mathur N D 2024 Nat. Mater. 23 639
[81] Zhang T, Li W, Cao W, Hou Y, Yu Y and Fei W 2016 Appl. Phys. Lett. 108 162902
[82] Zhao W, Li Z, Wang Z, Peng Y, Shi L, Hua W, Wang J, Wang L, Fei W D and Zhao Y 2023 Acta Mater. 254 118989
[83] Epstein R I and Malloy K J 2009 J. Appl. Phys. 106 064509
[84] Guo D, Gao J, Yu Y J, Santhanam S, Slippey A, Fedder G K, Mc- Gaughey A J and Yao S C 2014 Int. J. Heat Mass Trans. 72 559
[85] Shi J, Li Q, Gao T, Han D, Li Y, Chen J and Qian X 2021 Int. J. Refrig. 121 279
[86] Guo D, Gao J, McGaughey A J H, Fedder G K, Moran M and Yao S C 2013 J. Heat Transfer 135 111003
[87] Han D, Zhang Y, Huang C, Zheng S, Wu D, Li Q, Du F, Duan H, Chen W, Shi J, Chen J, Liu G, Chen X and Qian X 2024 Nature 629 1041
[88] Peng H 2020 Fiber Electronics (Singapore: Springer)
[89] Zeng K, Shi X, Tang C, Liu T and Peng H 2023 Nat. Rev. Mater. 8 552
[90] Wang T, Meng J, Zhou X, Liu Y, He Z, Han Q, Li Q, Yu J, Li Z, Liu Y, Zhu H, Sun Q, Zhang D W, Chen P, Peng H and Chen L 2022 Nat. Commun. 13 7432
[91] Yang F, Zhang Z, Xu L, Liu Z, Jin P, Zhuang P, Lei M, Liu J, Jiang J H, Ouyang X, Marchesoni F and Huang J 2024 Rev. Mod. Phys. 96 015002
[92] Zhang Z, Xu L, Qu T, Lei M, Lin Z K, Ouyang X, Jiang J H and Huang J 2023 Nat. Rev. Phys. 5 218
[93] Yang S, Wang J, Dai G, Yang F and Huang J P 2021 Phys. Rep. 908 1
[94] Wei Y H and He D H 2023 Chin. Phys. Lett. 40 090502
[95] Wang B and Huang J P 2022 Chin. Phys. B 31 098101
[96] Liang S Q, Liu J H, Lai Y and Liu X Z 2023 Chin. Phys. B 32 044301
[97] Lou Q, Zhang X D and Xia M G 2023 Chin. Phys. B 32 094102
[98] Zhu Q G, Chai L C and Lu H 2023 Chin. Phys. B 32 104215
[99] Shen X Y, Li Y, Jiang C R and Huang J P 2016 Phys. Rev. Lett. 117 055501
[100] Zhang Z R, Xu L J, Qu T, Lei M, Lin Z K, Ouyang X P, Jiang J H and Huang J P 2023 Nat. Rev. Phys. 5 218
[101] Jin P, Xu L J, Xu G Q, Li J X, Qiu CWand Huang J P 2024 Adv. Mater. 36 2305791
[102] Xu L J, Xu G Q, Li J X, Li Y, Huang J P and Qiu C W 2022 Phys. Rev. Lett. 129 155901
[103] Xu L, Xu G, Huang J and Qiu C W 2022 Phys. Rev. Lett. 128 145901
[104] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[105] Li J Y, Gao Y and Huang J P 2010 J. Appl. Phys. 108 074504
[106] Liu Z F, Jin P, Lei M, Wang C M, Marchesoni F, Jiang J H and Huang J P 2024 Nat. Rev. Phys. 6 554
[107] Xu L J, Dai G L, Yang F B, Liu J R, Zhou Y H, Wang J, Xu G Q, Huang J P and Qiu C W 2024 Nat. Comput. Sci. 4 532
[108] Liu Z, Cao P C, Xu L, Xu G, Li Y and Huang J P 2024 Phys. Rev. Lett. 132 176302
[109] Yang F B, Zhang Z R, Xu L J, Liu Z F, Jin P, Zhuang P F, Lei M, Liu J R, Jiang J H, Ouyang X P, Marchesoni F and Huang J P 2024 Rev. Mod. Phys. 96 015002
[110] Zhang Z, Xu L, Qu T, Lei M, Lin Z K, Ouyang X, Jiang J H and Huang J 2023 Nat. Rev. Phys. 5 218
[111] Dai G L and Huang J P 2020 Int. J. Heat Mass Transfer 147 118917
[112] Gao Y and Huang J P 2013 Europhys. Lett. 104 44001
[113] Yang F B, Xu L J and Huang J P 2019 ES Energy & Environment 6 45
[114] Xu L J, Yang S and Huang J P 2019 Phys. Rev. Appl. 11 054071
[115] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S and Huang J P 2015 Phys. Rev. Lett. 115 195503
[116] Zhou X C, Xu X and Huang J P 2023 Nat. Commun. 14 5449
[117] Xu L J, Liu J, Xu G Q, Huang J P and Qiu C W 2023 Proc. Natl. Acad. Sci. USA 120 e2305755120
[118] Zhu N Q, Shen X Y and Huang J P 2015 AIP Adv. 5 053401
[119] Guihard V, Patapy C, Sanahuja J, Balayssac J P, Taillade F and Steck B 2020 Int. J. Eng. Sci. 150 103273
[120] Fan C Z,Wang J Q, Cheng Y G, Ding P, Liang E J and Huang J P 2013 Chin. Phys. B 22 084703
[121] Huang J P, Yu K W and Gu G Q 2002 Phys. Rev. E 65 021401
[122] Tao H, Yin J, Zhao L, Wu B, Ma J, Ergu D and Wu J 2022 J. Mater. Chem. C 10 17099
[123] Yuan Y, Jin M, Zhu D, Wang H and Cui Y 2023 J. Natl. Univ. Def. Technol. 45 144
[124] Mou C and Chen J 2024 Mod. Appl. Phys. 15 10502
[125] Huang J P and Zhuang P F 2024 Mod. Appl. Phys. 15 50101
[126] Grünebohm A G, Teng S H and Marathe M 2023 J. Phys. Energy 5 034010
[127] Nishioka T 2018 Rev. Mod. Phys. 90 035007
[128] Harlow D and Ooguri H 2021 Commun. Math. Phys. 383 1669
[1] Barocaloric effect in ferroelastic Pb3(VO4)2
Pengtao Cheng(程鹏涛), Zuhua Chen(陈祖华), Chengliang Zhang(张成亮), Zhengming Zhang(张正明), Bing Li(李昺), and Dunhui Wang(王敦辉). Chin. Phys. B, 2025, 34(3): 036801.
[2] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[3] Tuning the magnetocaloric and structural properties of La0.67Sr0.28Pr0.05Mn1-xCoxO3 refrigeration materials
Changji Xu(徐长吉), Xinyu Jiang(姜心雨), Zhengguang Zou(邹正光), Zhuojia Xie(谢卓家), Weijian Zhang(张伟建), and Min Feng(冯敏). Chin. Phys. B, 2024, 33(12): 127501.
[4] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[5] Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国). Chin. Phys. B, 2023, 32(11): 117501.
[6] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure
Hongbo Liu(刘宏波). Chin. Phys. B, 2020, 29(8): 087701.
[10] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[11] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[12] Electrocaloric effect and pyroelectric properties of organic-inorganic hybrid (C2H5NH3)2CuCl4
Yi Liu(刘义), Yan-Fen Chang(畅艳芬), Young Sun(孙阳), Jun Shen(沈俊), Li-Qin Yan(闫丽琴), Zun-Ming Lu(卢遵铭). Chin. Phys. B, 2019, 28(11): 117701.
[13] Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al)13-based materials
Bo Zhang(张博), Xin-Qi Zheng(郑新奇), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 067503.
[14] Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(3): 037504.
[15] Effect of an electric field on the electrocaloric response of ferroelectrics
Hongbo Liu(刘宏波). Chin. Phys. B, 2018, 27(12): 127701.
No Suggested Reading articles found!