Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 036801    DOI: 10.1088/1674-1056/ada9d8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Barocaloric effect in ferroelastic Pb3(VO4)2

Pengtao Cheng(程鹏涛)1,2, Zuhua Chen(陈祖华)3,4, Chengliang Zhang(张成亮)1, Zhengming Zhang(张正明)1, Bing Li(李昺)5,6, and Dunhui Wang(王敦辉)1,†
1 Hangzhou Dianzi University, Hangzhou 310018, China;
2 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
3 Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
5 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
6 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  The barocaloric effect is considered as one of the most promising refrigeration with the potential to replace traditional gas compression refrigeration. One of the main obstacles to the application of barocaloric materials lies in the requirement for high driving pressures. In this paper, we report on the barocaloric effect of Pb3(VO4)2, which exhibits a ferroelastic transition from a high-temperature trigonal structure to a low-temperature monoclinic structure at 357 K, accompanied by a substantial volume change. The entropy change induced by hydrostatic pressure can reach up 14 Jkg1K1 under a relatively low pressure of 80 MPa. This work is expected to expand the selection range of barocaloric materials.
Keywords:  solid-state refrigeration      barocaloric effect      ferroelastic transition  
Received:  08 October 2024      Revised:  04 December 2024      Accepted manuscript online:  14 January 2025
PACS:  68.35.Rh (Phase transitions and critical phenomena)  
  62.50.-p (High-pressure effects in solids and liquids)  
  81.40.Vw (Pressure treatment)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52301241 and 52271175).
Corresponding Authors:  Dunhui Wang     E-mail:  wangdh@hdu.edu.cn

Cite this article: 

Pengtao Cheng(程鹏涛), Zuhua Chen(陈祖华), Chengliang Zhang(张成亮), Zhengming Zhang(张正明), Bing Li(李昺), and Dunhui Wang(王敦辉) Barocaloric effect in ferroelastic Pb3(VO4)2 2025 Chin. Phys. B 34 036801

[1] Franco V, Blázquez J, Ipus J, Law J, Moreno-Ramírez L and Conde A 2018 Prog. Mater. Sci. 93 112
[2] Gschneidner K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[3] Kumar A, Thakre A, Jeong D Y and Ryu J 2019 J. Mater. Chem. C 7 6836
[4] Shi J, Han D, Li Z, Yang L, Lu S G, Zhong Z, Chen J, Zhang Q and Qian X 2019 Joule 3 1200
[5] Chen J, Lei L and Fang G 2021 Mater. Today Commun. 28 102706
[6] Imran M and Zhang X 2020 Mater. Design 195 109030
[7] Cirillo L, Greco A and Masselli C 2022 Therm. Sci. Eng. Prog. 33 101380
[8] Mañosa L and Planes A 2017 Adv. Mater. 29 1603607
[9] Mañosa L, González A D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478
[10] Mañosa L, González A D, Planes A, Barrio M, Tamarit J L, Titov I S, Acet M, Bhattacharyya A and Majumdar S 2011 Nat. Commun. 2 595
[11] Yuce S, Barrio M, Emre B, Stern-Taulats E, Planes A, Tamarit J L, Mudryk Y, Jr. K A G, Pecharsky V K and Mañosa L 2012 Appl. Phys. Lett. 101 071906
[12] Wu R R, Bao L F, Hu F X, Wu H, Huang Q Z, Wang J, Dong X L, Li G N, Sun J R, Shen F R, Zhao T Y, Zheng X Q, Wang L C, Liu Y, Zuo W L, Zhao Y Y, Zhang M, Wang X C, Jin C Q, Rao G H, Han X F and Shen B G 2015 Sci. Rep. 5 18027
[13] Bermúdez-García J M, Sánchez-Andújar M, Castro-García S, López- Beceiro J, Artiaga R and Señarís-Rodríguez M A 2017 Nat. Commun. 8 15715
[14] Bermúdez-García J M, Yáñez-Vilar S, García-Fernández A, Sánchez- Andújar M, Castro-García S, López-Beceiro J, Artiaga R, Dilshad M, Moya X and Señarís-Rodríguez M A 2018 J. Mater. Chem. C 6 9867
[15] Lloveras P, Stern-Taulats E, Barrio M, Tamarit J L, Crossley S, Li W, Pomjakushin V, Planes A, Mañosa L, Mathur N D and Moya X 2015 Nat. Commun. 6 8801
[16] Gorev M V, Mikhaleva E A, Flerov I N and Bogdanov E V 2019 J. Alloys Compd. 806 1047
[17] Aznar A, Lloveras P, Romanini M, Barrio M, Tamarit J L, Cazorla C, Errandonea D, Mathur N D, Planes A, Moya X and Mañosa L 2017 Nat. Commun. 8 1851
[18] Sagotra A K, Chu D and Cazorla C 2018 Nat. Commun. 9 3337
[19] Flerov I N, Kartashev A V, Gorev M V, Bogdanov E V, Mel’nikova S V, Molokeev M S, Pogoreltsev E I and Laptash N M 2016 J. Fluorine Chem. 183 1
[20] Kartashev A V, Gorev M V, Bogdanov E V, Flerov I N and Laptash N M 2016 J. Solid State Chem. 237 269
[21] Gorev M V, Bogdanov E V and Flerov I N 2017 Scr. Mater. 139 53
[22] Boldrin D, Mendive-Tapia E, Zemen J, Staunton J B, Hansen T, Aznar A, Tamarit J L, Barrio M, Lloveras P, Kim J, Moya X and Cohen L F 2018 Phys. Rev. X 8 041035
[23] Matsunami D, Fujita A, Takenaka K and Kano M 2015 Nat. Mater. 14 73
[24] Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J, Chen Y, Kawaguchi S I, Kawaguchi S and Ohara K 2019 Nature 567 506
[25] Lloveras P, Aznar A, Barrio M, Negrier P, Popescu C, Planes A, Mañosa L, Stern-Taulats E, Avramenko A, Mathur N D, Moya X and Tamarit J L 2019 Nat. Commun. 10 1803
[26] He X, Kang Y, Wei S, Zhang Y, Cao Y, Xu K, Li Z, Jing C and Li Z 2018 J. Alloys Compd. 741 821
[27] Ren Q, Qi J, Yu D, Zhang Z, Song R, Song W, Yuan B, Wang T, Ren W, Zhang Z, Tong X and Li B 2022 Nat. Commun. 13 2293
[28] Zhang Z, Jiang X, Hattori T, Xu X, Li M, Yu C, Zhang Z, Yu D, Mole R, Yano S, Chen J, He L, Wang C W, Wang H, Li B and Zhang Z 2023 Mater. Horiz. 10 977
[29] Mandal S and Ghosh A 1993 Phys. Rev. B 48 9388
[30] Mandal S and Ghosh A 1994 Phys. Rev. B 49 3131
[31] Hirofumi K, Talashi U and Hikaru T 1992 J. Phys. Soc. Jpn. 61 2309
[32] Michio M, Hidetoshi K and Yoshihiro I 1981 J. Phys. Soc. Jpn. 50 1592
[33] Hirofumi K, Talashi U, Hikaru T and Yoshihiro I 1991 J. Phys. Soc. Jpn. 60 1169
[34] Hafner J and Kresse G 1997 Properties of Complex Inorganic Solids
[35] Perdew J P, Chevary J, Vosko S, Jackson K A, Pederson M R, Singh D and Fiolhais C 1993 Phys. Rev. B 48 4978
[36] Denisova L T, Izotov A D, Irtyugo L A, Kargin Y F, Denisov V M and Beletskii V V 2016 Dokl. Phys. Chem. 466 4
[1] High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol
Zhe Zhang(张哲), Yan-Na Chen(陈艳娜), Ji Qi(齐迹), Zhao Zhang(张召), Koji Ohara, Osami Sakata, Zhi-Dong Zhang(张志东), and Bing Li(李昺). Chin. Phys. B, 2022, 31(3): 036802.
[2] Giant mechanocaloric materials for solid-state cooling
Junran Zhang(张俊然), Yixuan Xu(徐逸轩), Shihai An(安世海), Ying Sun(孙莹), Xiaodong Li(李晓东), Yanchun Li(李延春). Chin. Phys. B, 2020, 29(7): 076202.
[3] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
No Suggested Reading articles found!