Abstract Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) is a derivative of polyvinylidene fluoride (PVDF), known for its excellent ferroelectric properties, optical characteristics, chemical stability, and flexibility, making it a promising material for applications in electronic devices. In this study, the polarization switching mechanism of the -phase of P(VDF-TrFE) is investigated using the polarized crystal charge method, along with molecular dynamics simulations. The simulation results show that the saturation polarization value is approximately 5.3 μC/cm, and a coercive field of around 0.5 V/nm is required to switch its polarization states. By fitting the polarization reversal curve with the Kolmogorov-Avrami-Ishibashi model, it is observed that the data in the asymptotic and switching regions closely align with the predictions of the model, and the Avrami index consistently ranges between 1 and 2. The polarization reversal is completed within approximately 10 ps, demonstrating high-speed dynamic behavior. Additionally, we predict that the ferroelectric phase transition occurs between 420 K and 430 K, with stable polarization performance maintained over a wide temperature range, which is consistent with experimental results.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1200700), the National Natural Science Foundation of China (Grant Nos. 11905054, 12275075, and 11704111), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:
Sheng-Yi Xie, Fuxiang Li
E-mail: shengyi xie@hnu.edu.cn;fuxiangli@hnu.edu.cn
Cite this article:
Mengyuan Tang(唐梦圆), Chuhan Tang(唐楚涵), Sheng-Yi Xie(谢声意), and Fuxiang Li(李福祥) Molecular dynamics simulations of ferroelectricity in P(VDF-TrFE) 2025 Chin. Phys. B 34 067701
[1] Valasek J 1921 Phys. Rev. 17 475 [2] Damjanovic D 2005 J. Am. Ceram. Soc. 88 10 [3] Flynn A M, TavroL S, Bart S F, Brooks R A, Ehrlich D J and Udayakumar K R 1992 Journal of Microelectromechanical Systems 1 44 [4] Scott J F 2007 Science 315 5814 [5] Shaw T M, Trolier-McKinstry S and McIntyre P C 2000 Ann. Rev. Mater. Sci. 30 263 [6] Uchino K 1982 J. Appl. Phys. 44 55 [7] Huang Y, Hu P, Song J, et al. 2019 Chem. Phys. Lett. 730 367 [8] Dawber M and Scott J F 2000 Appl. Phys. Lett. 76 1060 [9] Kenji I, Kazutoshi Y and Nagaya O 1988 Phys. Rev. B 37 5852 [10] Liao W Q, Zhang Y, Hu C L, et al. 2015 Nat. Commun. 6 7338 [11] Sieradzki A, Mirosław M, Simenas M, et al. 2018 J. Mater. Chem. C 6 9420 [12] Mantas S, Sergejus B, Ciupa A, et al. 2019 J. Mater. Chem. C 7 6779 [13] Zhou L, Zang X L, Cao Y Y, et al. 2023 Chin. Phys. B 32 017701 [14] Li P F, Liao W Q, Tang Y Y, et al. 2017 J. Am. Chem. Soc. 139 8752 [15] Ye H Y, Tang Y Y, Li P F, et al 2018 Science 361 151 [16] Li J, Liu Y, Zhang Y, et al. 2013 Phys. Chem. Chem. Phys. 15 20786 [17] Cai H L, Zhang Y, Fu D W, et al. 2012 J. Am. Chem. Soc. 134 18487 [18] Nalwa H S 1995 CRC Press 10 912 [19] Jung S W, Koo J B, Park C W, et al. 2016 J. Mater. Chem. C 4 4485 [20] Weller H J, Setiadi D and Binnie T D 2000 Sens. Actuators, A 85 267 [21] Dong L, Liu B H, Wang Y Y and XU X F 2022 Chin. Phys. Lett. 39 127201 [22] Pauling L 1960 The nature of the chemical bond, 3rd. Edn. (Ithaca: Cornell University Press) [23] Hasegawa R, Kobayashi M and Tadokoro H 1972 Polymer Journal 3 591 [24] Kepler R G and Anderson R A 1991 Adv. Phys. 41 1 [25] Furukawa T 2011 Ferroelectrics 104 229 [26] Hicks J C, Jones T E and Logan J C 1978 J. Appl. Phys. 49 6092 [27] Yagi T, Tatemoto M and Sako J 1980 Polymer Journal 12 209 [28] Dawber M, Rabe K M and ScottJ F 2005 Rev. Mod. Phys. 77 1083 [29] Junquera J and Ghosez P 2003 Nature 422 506 [30] Scott J F 2007 Science 315 954 [31] Catalan G and Scott J F 2009 Adv. Mater. 21 2463 [32] Dawber M, Chandra P, Littlewood P B and Scott J F 2003 J. Phys.: Condens. Matter 15 L393 [33] Garcia V, Bibes M, Bocher L, et al. 2010 Science 327 1106 [34] I ñiguez J, Zubko P, Luk Y, et al. 2019 Nat. Rev. Mater. 4 243 [35] Seidel J, Martin L W, Lane W, et al. 2009 Nat. Mater. 8 229 [36] Hu,W J, Juo D M, You L, et al. 2014 Sci. Rep. 4 4772 [37] Furukawa T and Johnson G E 1981 Appl. Phys. Lett. 38 1027 [38] Vizdrik G, Ducharme S, Stephen, et al. 2003 Phys. Rev. B 68 094113 [39] Sharma P, Reece T J, Ducharme S, et al. 2011 Nano Lett. 11 1970 [40] Stolichnov I, Maksymovych P, Mikheev E, et al. 2012 Phys. Rev. Lett. 108 027603 [41] Sharma P, Nakajima T, Okamura S, et al. 2013 Nanotechnology 24 015706 [42] Zhao D, Katsouras I, Asadi K, et al. 2015 Phys. Rev. B 92 214115 [43] Ishibashi Y and Takagi Y 1970 J. Phys. Soc. Jpn. 31 506 [44] Kolmogorov A N 1937 Mathematics and Its Applications (Soviet Series) 3 335 [45] Avrami M 1939 J. Chem. Phys. 7 1103 [46] Naber Ronald C, Asadi K, Blom P, et al. 2010 Adv. Mater. 22 933 [47] Hu W J, Juo D M, You L, et al. 2014 Sci. Rep. 4 4772 [48] Denning Denise, Guyonnet J and Rodriguez B J 2015 International Materials Reviews 61 46 [49] Genenko Y A, Zhukov S, Yampolskii S, et al. 2012 Adv. Funct. Mater. 22 2058 [50] Wu Q, Song Y J and Li J 2019 Polymer Materials Science and Engineering 35 167 [51] Scott A and Ron O 2018 Neuron 99 1129 [52] Case D A, Cheatham I, Thomas E, et al. 2005 J. Comput. Chem. 26 1668 [53] Klauda J B, Venable R M, Freites J, et al. 2010 J. Phys. Chem. B 114 7830 [54] Zhu T, Wu C, Song J, et al. 2018 Chem. Phys. Lett. 706 303 [55] Li Y X, Zhang J and Mei Y 2014 J. Phys. Chem. B 118 12326 [56] Hu P F, Hu S B, Huang Y, et al. 2019 J. Phys. Chem. Lett. 10 1319 [57] Zhu X Q and FanWB, RenW, et al. 2021 J. Phys. Chem. C 125 12416 [58] Huang Y D, Hu P F, Song J, et al. 2019 Chem. Phys. Lett. 730 367 [59] Allen F H, Bellard S, Brice M, et al. 1979 Acta Cryst. B 35 10 [60] Jürgen H 2008 J. Comput. Chem. 29 2044 [61] Hammer B, Hansen L, Jens K, et al. 1999 Phys. Rev. B 59 7413 [62] Blöchl P E 1994 Phys. Rev. B 50 17953 [63] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 3 1959 [64] Wang J M, Wolf R, Caldwell J, et al. 2004 J. Comput. Chem. 25 1157 [65] Van D S, David, Lindahl E, et al. 2005 J. Comput. Chem. 26 1701 [66] Bayly C I, Cieplak P, Cornell W, et al. 1993 J. Phys. Chem. 97 10269 [67] Wang R N, Xu F, Gui X, et al. 2023 Chin. J. Chem. Phys. 36 75 [68] Frisch A 2009 Wallingford. USA. 25p 470 [69] Tian L 2024 Sobtop Version dev5 [70] Van G,Wilfred F and B, Herman J C 1987 Molecular Simulation 1 173 [71] Hess B, Bekker H, Berendsen H, et al. 1998 J. Comput. Chem. 18 1463 [72] Grubmüller H, Heller H, Windemuth A, et al. 1991 Molecular Simulation 6 121 [73] Essmann U, Perera L, Berkowitz M, et al. 1995 J. Chem. Phys. 19 8577 [74] Evans D J and Holian B L 1985 J. Chem. Phys. 83 4069 [75] Nosé S 2006 Molecular Physics 52 255 [76] Rowlinson J S 2005 Molecular Physics 103 2821 [77] Hu W J, Juo D M and You L 2014 Sci. Rep. 4 4772 [78] Furukawa T and Johnson G E 1981 Appl. Phys. Lett. 38 1027 [79] Xia J N, Qiu X C, Liu Y, et al. 2023 Adv. Sci. 10 2300133 [80] Larsen P K, Kampschöer G, Ulenaers M, et al. 1991 Appl. Phys. Lett. 59 611 [81] Si M, Xiao L, Pragya R, et al. 2019 Appl. Phys. Lett. 115 072107 [82] Mankowsky R, Hoegen A, Först1 M, et al. 2017 Phys. Rev. Lett. 118 197601 [83] Yang Q and Meng S 2024 Phys. Rev. Lett. 133 136902 [84] Herchenröder P, Segui Y, Horne D and Yoon D Y 1980 Phys. Rev. Lett. 45 2135 [85] Davis G T, Furukawa T, Lovinger A, et al. 1982 Macromolecules 2 329 [86] Tashir K and Kobayashi M 2006 A Multinational Journal 18 213
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.