Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067701    DOI: 10.1088/1674-1056/adbbc1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Molecular dynamics simulations of ferroelectricity in P(VDF-TrFE)

Mengyuan Tang(唐梦圆), Chuhan Tang(唐楚涵), Sheng-Yi Xie(谢声意)†, and Fuxiang Li(李福祥)‡
School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) is a derivative of polyvinylidene fluoride (PVDF), known for its excellent ferroelectric properties, optical characteristics, chemical stability, and flexibility, making it a promising material for applications in electronic devices. In this study, the polarization switching mechanism of the β-phase of P(VDF-TrFE) is investigated using the polarized crystal charge method, along with molecular dynamics simulations. The simulation results show that the saturation polarization value is approximately 5.3 μC/cm2, and a coercive field of around 0.5 V/nm is required to switch its polarization states. By fitting the polarization reversal curve with the Kolmogorov-Avrami-Ishibashi model, it is observed that the data in the asymptotic and switching regions closely align with the predictions of the model, and the Avrami index n consistently ranges between 1 and 2. The polarization reversal is completed within approximately 10 ps, demonstrating high-speed dynamic behavior. Additionally, we predict that the ferroelectric phase transition occurs between 420 K and 430 K, with stable polarization performance maintained over a wide temperature range, which is consistent with experimental results.
Keywords:  P(VDF-TrFE)      ferroelectricity      polarization swiching      Curie temperature  
Received:  11 January 2025      Revised:  25 February 2025      Accepted manuscript online:  03 March 2025
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  02.70.Ns (Molecular dynamics and particle methods)  
  77.22.Ej (Polarization and depolarization)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1200700), the National Natural Science Foundation of China (Grant Nos. 11905054, 12275075, and 11704111), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Sheng-Yi Xie, Fuxiang Li     E-mail:  shengyi xie@hnu.edu.cn;fuxiangli@hnu.edu.cn

Cite this article: 

Mengyuan Tang(唐梦圆), Chuhan Tang(唐楚涵), Sheng-Yi Xie(谢声意), and Fuxiang Li(李福祥) Molecular dynamics simulations of ferroelectricity in P(VDF-TrFE) 2025 Chin. Phys. B 34 067701

[1] Valasek J 1921 Phys. Rev. 17 475
[2] Damjanovic D 2005 J. Am. Ceram. Soc. 88 10
[3] Flynn A M, TavroL S, Bart S F, Brooks R A, Ehrlich D J and Udayakumar K R 1992 Journal of Microelectromechanical Systems 1 44
[4] Scott J F 2007 Science 315 5814
[5] Shaw T M, Trolier-McKinstry S and McIntyre P C 2000 Ann. Rev. Mater. Sci. 30 263
[6] Uchino K 1982 J. Appl. Phys. 44 55
[7] Huang Y, Hu P, Song J, et al. 2019 Chem. Phys. Lett. 730 367
[8] Dawber M and Scott J F 2000 Appl. Phys. Lett. 76 1060
[9] Kenji I, Kazutoshi Y and Nagaya O 1988 Phys. Rev. B 37 5852
[10] Liao W Q, Zhang Y, Hu C L, et al. 2015 Nat. Commun. 6 7338
[11] Sieradzki A, Mirosław M, Simenas M, et al. 2018 J. Mater. Chem. C 6 9420
[12] Mantas S, Sergejus B, Ciupa A, et al. 2019 J. Mater. Chem. C 7 6779
[13] Zhou L, Zang X L, Cao Y Y, et al. 2023 Chin. Phys. B 32 017701
[14] Li P F, Liao W Q, Tang Y Y, et al. 2017 J. Am. Chem. Soc. 139 8752
[15] Ye H Y, Tang Y Y, Li P F, et al 2018 Science 361 151
[16] Li J, Liu Y, Zhang Y, et al. 2013 Phys. Chem. Chem. Phys. 15 20786
[17] Cai H L, Zhang Y, Fu D W, et al. 2012 J. Am. Chem. Soc. 134 18487
[18] Nalwa H S 1995 CRC Press 10 912
[19] Jung S W, Koo J B, Park C W, et al. 2016 J. Mater. Chem. C 4 4485
[20] Weller H J, Setiadi D and Binnie T D 2000 Sens. Actuators, A 85 267
[21] Dong L, Liu B H, Wang Y Y and XU X F 2022 Chin. Phys. Lett. 39 127201
[22] Pauling L 1960 The nature of the chemical bond, 3rd. Edn. (Ithaca: Cornell University Press)
[23] Hasegawa R, Kobayashi M and Tadokoro H 1972 Polymer Journal 3 591
[24] Kepler R G and Anderson R A 1991 Adv. Phys. 41 1
[25] Furukawa T 2011 Ferroelectrics 104 229
[26] Hicks J C, Jones T E and Logan J C 1978 J. Appl. Phys. 49 6092
[27] Yagi T, Tatemoto M and Sako J 1980 Polymer Journal 12 209
[28] Dawber M, Rabe K M and ScottJ F 2005 Rev. Mod. Phys. 77 1083
[29] Junquera J and Ghosez P 2003 Nature 422 506
[30] Scott J F 2007 Science 315 954
[31] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[32] Dawber M, Chandra P, Littlewood P B and Scott J F 2003 J. Phys.: Condens. Matter 15 L393
[33] Garcia V, Bibes M, Bocher L, et al. 2010 Science 327 1106
[34] I ñiguez J, Zubko P, Luk Y, et al. 2019 Nat. Rev. Mater. 4 243
[35] Seidel J, Martin L W, Lane W, et al. 2009 Nat. Mater. 8 229
[36] Hu,W J, Juo D M, You L, et al. 2014 Sci. Rep. 4 4772
[37] Furukawa T and Johnson G E 1981 Appl. Phys. Lett. 38 1027
[38] Vizdrik G, Ducharme S, Stephen, et al. 2003 Phys. Rev. B 68 094113
[39] Sharma P, Reece T J, Ducharme S, et al. 2011 Nano Lett. 11 1970
[40] Stolichnov I, Maksymovych P, Mikheev E, et al. 2012 Phys. Rev. Lett. 108 027603
[41] Sharma P, Nakajima T, Okamura S, et al. 2013 Nanotechnology 24 015706
[42] Zhao D, Katsouras I, Asadi K, et al. 2015 Phys. Rev. B 92 214115
[43] Ishibashi Y and Takagi Y 1970 J. Phys. Soc. Jpn. 31 506
[44] Kolmogorov A N 1937 Mathematics and Its Applications (Soviet Series) 3 335
[45] Avrami M 1939 J. Chem. Phys. 7 1103
[46] Naber Ronald C, Asadi K, Blom P, et al. 2010 Adv. Mater. 22 933
[47] Hu W J, Juo D M, You L, et al. 2014 Sci. Rep. 4 4772
[48] Denning Denise, Guyonnet J and Rodriguez B J 2015 International Materials Reviews 61 46
[49] Genenko Y A, Zhukov S, Yampolskii S, et al. 2012 Adv. Funct. Mater. 22 2058
[50] Wu Q, Song Y J and Li J 2019 Polymer Materials Science and Engineering 35 167
[51] Scott A and Ron O 2018 Neuron 99 1129
[52] Case D A, Cheatham I, Thomas E, et al. 2005 J. Comput. Chem. 26 1668
[53] Klauda J B, Venable R M, Freites J, et al. 2010 J. Phys. Chem. B 114 7830
[54] Zhu T, Wu C, Song J, et al. 2018 Chem. Phys. Lett. 706 303
[55] Li Y X, Zhang J and Mei Y 2014 J. Phys. Chem. B 118 12326
[56] Hu P F, Hu S B, Huang Y, et al. 2019 J. Phys. Chem. Lett. 10 1319
[57] Zhu X Q and FanWB, RenW, et al. 2021 J. Phys. Chem. C 125 12416
[58] Huang Y D, Hu P F, Song J, et al. 2019 Chem. Phys. Lett. 730 367
[59] Allen F H, Bellard S, Brice M, et al. 1979 Acta Cryst. B 35 10
[60] Jürgen H 2008 J. Comput. Chem. 29 2044
[61] Hammer B, Hansen L, Jens K, et al. 1999 Phys. Rev. B 59 7413
[62] Blöchl P E 1994 Phys. Rev. B 50 17953
[63] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 3 1959
[64] Wang J M, Wolf R, Caldwell J, et al. 2004 J. Comput. Chem. 25 1157
[65] Van D S, David, Lindahl E, et al. 2005 J. Comput. Chem. 26 1701
[66] Bayly C I, Cieplak P, Cornell W, et al. 1993 J. Phys. Chem. 97 10269
[67] Wang R N, Xu F, Gui X, et al. 2023 Chin. J. Chem. Phys. 36 75
[68] Frisch A 2009 Wallingford. USA. 25p 470
[69] Tian L 2024 Sobtop Version dev5
[70] Van G,Wilfred F and B, Herman J C 1987 Molecular Simulation 1 173
[71] Hess B, Bekker H, Berendsen H, et al. 1998 J. Comput. Chem. 18 1463
[72] Grubmüller H, Heller H, Windemuth A, et al. 1991 Molecular Simulation 6 121
[73] Essmann U, Perera L, Berkowitz M, et al. 1995 J. Chem. Phys. 19 8577
[74] Evans D J and Holian B L 1985 J. Chem. Phys. 83 4069
[75] Nosé S 2006 Molecular Physics 52 255
[76] Rowlinson J S 2005 Molecular Physics 103 2821
[77] Hu W J, Juo D M and You L 2014 Sci. Rep. 4 4772
[78] Furukawa T and Johnson G E 1981 Appl. Phys. Lett. 38 1027
[79] Xia J N, Qiu X C, Liu Y, et al. 2023 Adv. Sci. 10 2300133
[80] Larsen P K, Kampschöer G, Ulenaers M, et al. 1991 Appl. Phys. Lett. 59 611
[81] Si M, Xiao L, Pragya R, et al. 2019 Appl. Phys. Lett. 115 072107
[82] Mankowsky R, Hoegen A, Först1 M, et al. 2017 Phys. Rev. Lett. 118 197601
[83] Yang Q and Meng S 2024 Phys. Rev. Lett. 133 136902
[84] Herchenröder P, Segui Y, Horne D and Yoon D Y 1980 Phys. Rev. Lett. 45 2135
[85] Davis G T, Furukawa T, Lovinger A, et al. 1982 Macromolecules 2 329
[86] Tashir K and Kobayashi M 2006 A Multinational Journal 18 213
[1] Manipulating optical and electronic properties through interfacial ferroelectricity
Yulu Liu(刘钰璐), Gan Liu(刘敢), and Xiaoxiang Xi(奚啸翔). Chin. Phys. B, 2025, 34(1): 017701.
[2] Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO2 thin films
S X Chen(陈思学), M M Chen(陈明明), Y Liu(刘圆), D W Cao(曹大威), and G J Chen(陈国杰). Chin. Phys. B, 2024, 33(9): 098701.
[3] Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成). Chin. Phys. B, 2024, 33(8): 087701.
[4] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127203.
[7] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[8] Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films
Yu Zhao(赵瑜), Wen-Yue Zhao(赵文悦), Dan-Dan Ju(琚丹丹), Yue-Yue Yao(姚月月), Hao Wang(王豪), Cheng-Yue Sun(孙承月), Ya-Zhou Peng(彭亚洲), Yi-Yong Wu(吴宜勇), and Wei-Dong Fei(费维栋). Chin. Phys. B, 2021, 30(10): 107702.
[9] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[10] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[11] Topology and ferroelectricity in group-V monolayers
Mutee Ur Rehman, Chenqiang Hua(华陈强), Yunhao Lu(陆赟豪). Chin. Phys. B, 2020, 29(5): 057304.
[12] A novel diluted magnetic semiconductor (Ca,Na)(Zn,Mn)2Sb2 with decoupled charge and spin dopings
Yilun Gu(顾轶伦), Haojie Zhang(张浩杰), Rufei Zhang(张茹菲), Licheng Fu(傅立承), Kai Wang(王恺), Guoxiang Zhi(智国翔), Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2020, 29(5): 057507.
[13] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[14] Magnetic properties of Sn-substituted Ni–Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2
M A Ali, M M Uddin, M N I Khan, F U Z Chowdhury, S M Hoque, S I Liba. Chin. Phys. B, 2017, 26(7): 077501.
[15] Strain-induced insulator-metal transition in ferroelectric BaTiO3 (001) surface: First-principles study
Lin Yang(杨林), Chang-An Wang(王长安), Cong Liu(刘聪), Ming-Hui Qin(秦明辉), Xu-Bing Lu(陆旭兵), Xing-Sen Gao(高兴森), Min Zeng(曾敏), Jun-Ming Liu(刘俊明). Chin. Phys. B, 2016, 25(7): 077302.
No Suggested Reading articles found!