Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068101    DOI: 10.1088/1674-1056/ada887
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications Prev   Next  

Surface-pitted TiN nanoparticles for direct absorption solar collectors

Heng Zhang(张衡)1, Yuchun Cao(曹玉春)1, Xiaowen Chen(陈晓文)2, Qihang Yang(杨起航)2, Ning Chen(陈宁)3,†, and Xiaohu Wu(吴小虎)4,‡
1 School of Energy, Changzhou University, Changzhou 213164, China;
2 College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;
3 Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China;
4 Thermal Science Research Center, Shandong Institute of Advanced Technology, Jinan 250100, China
Abstract  Direct absorption solar collectors use nanofluids to absorb and convert solar radiation. Despite the limitations of the photothermal properties of these nanofluids within the absorption spectra range, modifying the surface structure of the nanoparticles can broaden their absorption spectrum, thereby significantly improving the solar thermal conversion efficiency. This paper utilizes the finite element method to investigate the influence of surface pits on the photothermal properties of plasmonic nanoparticles, considering both material composition and surface micro-nano structures. Based on the findings, a novel TiN nanoparticle is proposed to enhance photothermal performance. This nanoparticle exhibits the lowest average reflectance (0.0145) in the 300-1100 nm wavelength range and the highest light absorption intensity across the solar spectrum, enabling highly efficient solar energy conversion. It not only reduces material costs but also effectively broadens the light absorption spectrum of spherical plasmonic nanoparticles. The distributions of the electric field, magnetic field, and energy field of the nanoparticles indicate that the combination of the ``lightning rod'' effect and surface plasmon resonance (SPR) significantly enhances both the electric and magnetic fields, thereby increasing the localized heating effect and improving the photothermal performance. Additionally, the number and size of the pits have a significant impact on the absorption efficiency (ηabs) of TiN nanoparticles. When the surface of the nanoparticles has 38 pits, ηabs can reach 90%, with the minimum optical penetration depth (h) of the nanofluid being 7 mm and the minimum volume fraction (fv) being 6.95×106. This study demonstrates that nanoparticles with micro-nano structures have immense potential in solar thermal applications, particularly in the field of direct absorption solar collectors.
Keywords:  solar thermal utilization      plasmonic nanoparticles      surface plasmon resonance      direct absorption solar collector  
Received:  09 December 2024      Revised:  07 January 2025      Accepted manuscript online:  10 January 2025
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  02.70.Bf (Finite-difference methods)  
  42.25.-p (Wave optics)  
  44.40.+a (Thermal radiation)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant No. 52106099) and the Taishan Scholars Program.
Corresponding Authors:  Ning Chen, Xiaohu Wu     E-mail:  nchen@sdfmu.edu.cn;xiaohu.wu@iat.cn

Cite this article: 

Heng Zhang(张衡), Yuchun Cao(曹玉春), Xiaowen Chen(陈晓文), Qihang Yang(杨起航), Ning Chen(陈宁), and Xiaohu Wu(吴小虎) Surface-pitted TiN nanoparticles for direct absorption solar collectors 2025 Chin. Phys. B 34 068101

[1] Xiao X, Jia H, Wen D and Zhao X 2020 Energy 192 116593
[2] Li Y,Wei D, Guo G, Zhao G, Tang Y and Dai X 2022 Chin. Phys. B 31 097301
[3] Shi C, Kim S, Warren N, Guo N, Zhang X, Wang Y, Willemsen A, López-Pernía C, Liu Y, Kingon A, Yan H, Zheng Y, Chen M, Sprague- Klein E and Sheldon B 2024 Langmuir 40 20195
[4] Sahin O, Richards R and Giurgiu I 2023 Sustainability 15 15805
[5] Zou Y, Li X, Yang L, Zhang B and Wu X 2023 Int. J. Therm. Sci. 185 108099
[6] Mahian O, Kianifar A, Heris S Z, Wen D S, Sahin A Z and Wongwises S 2017 Nano Energy 36 134
[7] Qi C, Hu J, Liu M, Guo L and Rao Z 2017 Energy Convers. Manag. 153 557
[8] Choi S and Eastman J A 2015 International Mechanical Engineering Congress and Exhibition CONF-951135-29
[9] Sun L, Yang L, Zhao N, Song J, Li X and Wu X 2022 Powder Technol. 411 117932
[10] Yu N, Tu W, Qiu P, Ren Q, Chen X, Zhu M, Liu Y and Chen Z 2022 Nano Today 43 101427
[11] Yu L, Huang Y, Li W, Shi C, Sheldon B, Chen Z and Chen M 2024 Nano Research Energy 3 e9120107
[12] Huang Y, Wu Y, Xu X, Qin F, Zhang S, An J, Wang H and Liu L 2022 Chin. Phys. B 31 128802
[13] Sun C, Zou Y, Qin C, Zhang B and Wu X 2022 Adv. Compos. Hybrid Mater. 5 2675
[14] Sun C, Qin C, Zhai H, Zhang B and Wu X 2021 Nanomaterials 11 2722
[15] Wen J, Li X, Zhang H, Chen M and Wu X 2022 Renew. Energy 193 1062
[16] Gan Z, Chen Z, Liu L, Zhang L, Tu W and Liu Y 2017 Sol. RRL 1 1600032
[17] Qin C, Kim J, Gonome H and Lee B J 2020 Renew. Energy 145 21
[18] Liu H, Ma Z, Zhang C, Ai Q, Xie M and Wu X 2023 Renew. Energy 208 251
[19] Chen M, Wang X, Hu Y and He Y 2020 J. Quant. Spectrosc. Radiat. Transfer 250 107029
[20] Yang Q, Qin C, Zou Y, Liu H, Zhang B and Wu X 2023 Int. J. Therm. Sci. 191 108387
[21] Salari A, Taheri A, Farzanehnia A, Passandideh-fard M and Sardarabadi M 2021 J. Clean. Prod. 282 124318
[22] Qin C, Zhu Q, Li X, Sun C, ChenMandWu X 2022 Renewable Energy 197 79
[23] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (Germany: Strauss GmbH) pp. 1-153
[24] Kumar G V P 2012 J. Nanophotonics 6 064503
[25] Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P and Liu N 2010 Nano Lett. 10 2721
[26] Zeng J and Xuan Y M 2018 Nano Energy 51 754
[27] Palik E 1998 Handbook of Optical Constants of Solids (USA: Academic Press) pp. 1-957
[28] Sun C, Qin C, Zou Y, Liu H, Zhang B and Wu X 2022 Phys. Chem. Chem. Phys. 24 27949
[29] Yang Q, Zou Y, Li X, Yang L, Zhang B and Wu X 2024 Int. J. Therm. Sci. 195 108612
[30] Zhao J, Pinchuk A O, Mcmahon J M, Li S, Ausman L K, Atkinson A L, Schatz G C 2008 Acc. Chem. Res. 41 1710
[31] Loudon R 1970 J. Phys. Gen. Phys. 3 233245
[32] Wang X, Wang Y, Yang X and Cao Y 2019 Sol. Energy 181 439
[33] Chehaidar A and Hadded M 2019 Opt. Mater. 95 109207
[34] Yu X, Huang M, Wang X, Sun Q, Tang G H and Du M 2022 Renew. Energy 190 741
[35] Tang H and Li X X 2014 Int. J. Numer. Methods Heat Fluid Flow 24 1762
[36] Hale G M and Querry M R 1973 Appl. Opt. 12 555
[37] Swinehart D F 1962 J. Chem. Educ. 39 333
[38] Sun C, Zou Y, Qin C, Chen M, Li X, Zhang B and Wu X 2022 Renew. Energy 189 402
[1] Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films
Yuxin Li(李宇昕), Hailiang Chen(陈海良), Yingyue Zhang(张赢月), Qiang Chen(陈强), Biao Wu(武彪),Xiaoya Fan(樊晓亚), Yingchao Liu(刘英超), and Mingjian Ma(马明建). Chin. Phys. B, 2023, 32(5): 054209.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[6] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[7] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[8] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[9] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[10] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[11] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[12] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[13] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[14] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[15] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
No Suggested Reading articles found!