Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 054203    DOI: 10.1088/1674-1056/adb949
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhancement of four-wave mixing due to coherent hole burning in a degenerate two-level system

Zhi-Yuan Liu(刘知远)1, Yi-Fan Yao(姚一凡)1, Yue Sun(孙悦)1, Jia-Yu Han(韩佳瑜)1, and Ying-Jie Du(杜英杰)1,2,†
1 School of Physics, Northwest University, Xi'an 710127, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We present a theoretical study of four-wave mixing (FWM) in a degenerate two-level atomic system subject to a magnetic field whose Zeeman sublevels constitute a tripod-type atomic system, which is driven by a linearly polarized field, and coupled and probed by two sets of left and right circularly polarized fields. The optical effects of coherent hole burning (CHB) and electromagnetically induced transparency (EIT) are involved in the coherent system, among which the CHB has much larger response for the FWM than the EITs. Three situations of CHB are involved, and they are the solitary CHB, overlapped CHBs, and an overlap between CHB and EIT. The overlapped CHBs have the greatest magnitude of FWM signal among the three situations. Whereas, for the overlapped CHB and EIT, it has the smallest FWM magnitude, which is no more than one tenth of the former. While for the single CHB, the FWM magnitude is half of that of the overlapped CHBs. It is noted that, in the overlap between CHB and EIT, dual EIAs can be obtained, whose FWM signal also has an enhancement in comparison to no EIA.
Keywords:  four-wave mixing      coherent hole burning      electromagnetically induced transparency      electromagnetically induced absorption  
Received:  19 November 2024      Revised:  12 January 2025      Accepted manuscript online:  24 February 2025
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the Open Subject of the State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF202209).
Corresponding Authors:  Ying-Jie Du     E-mail:  yingjied@nwu.edu.cn

Cite this article: 

Zhi-Yuan Liu(刘知远), Yi-Fan Yao(姚一凡), Yue Sun(孙悦), Jia-Yu Han(韩佳瑜), and Ying-Jie Du(杜英杰) Enhancement of four-wave mixing due to coherent hole burning in a degenerate two-level system 2025 Chin. Phys. B 34 054203

[1] Lin Y H and Lin G R 2013 Laser Physics Letters 10 045109
[2] Liu J and Kobayashi T 2010 Sensors 10 4296
[3] Qiu M W, Cai C Q and Zhang Z X 2022 Chin. Phys. B 31 104207
[4] Zhou X, Li Z, Zhou Y, Bi M, Hu M, Yang G, Li Q, Lu Y and Wang T 2019 Optical and Quantum Electronics 51 297
[5] Trofimov V A and Kuchik L E 2017 Laser Application in Microelectronic and optoelectronic Manufacturing (LAMOM) XXII 10091 31
[6] Dorfman K, Liu S, Lou Y, Wei T, Jing J, Schlawin F and Mukamel S 2021 Proc. Natl. Acad. Sci. USA 118 e2105601118
[7] Li J, Zeng J, Li F, Zhang Y and Cai Y 2022 Opt. Express 30 39762
[8] Lou Y, Chen Y, Wang J, Liu S and Jing J 2023 Science China Physics, Mechanics & Astronomy 66 250311
[9] Feng L T, Cheng Y J, Qi X Z, Zhou Z Y, Zhang M, Dai D X, Guo G C and Ren X F 2023 Optica 10 702
[10] Muller M, Bounouar S, Jons K D, Glassl M and Michler P 2014 Nat. Photonics 8 224
[11] Zhang K, Wang W, Liu S, Pan X, Du J, Lou Y, Yu S, Lv S, Treps N, Fabre C et al. 2020 Phys. Rev. Lett. 124 090501
[12] Pan C, Li H, Pang H, Ru R, Zhang S, Wei D, Chen H, Gao H and Li F 2023 Laser & Photonics Reviews 18 2300625
[13] Qin Z, Gao L and Jing J 2015 Appl. Phys. Lett. 106 211104
[14] Pan X, Chen H, Wei T, Zhang J, Marino A M, Treps N, Glasser and Jing J 2018 Phys. Rev. B 97 161115
[15] Lipsich A, Barreiro S, Akulshin A and Lezama A 2000 Phys. Rev. A 61 053803
[16] Mollow B 1972 Phys. Rev. A 5 2217
[17] Harris H E, Field G and Imamoglu. A 1990 Phys. Rev. Lett. 64 1107
[18] Boller, K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[19] Gea-Banacloche J, Li Y Q, Jin S Z and Xiao M 1995 Phys. Rev. A 51 576
[20] Arimondo E 1996 Progress in Optics 35 257
[21] Gray H, Whitley R and Stroud C 1978 Opt. Lett. 3 218
[22] Alzetta G, Gozzini A, Moi L and Orriols G 1976 Nuovo Cimento B 36 5
[23] Taichenachev A, Tumaikin A and Yudin V 1999 Phys. Rev. A 61 011802
[24] Renzoni F, Cartaleva S, Alzetta G and Arimondo E 2001 Phys. Rev. A 63 065401
[25] Boyd R W, Raymer M G, Narum P and Harter D J 1981 Phys. Rev. A 24 411
[26] Hillman LW, Boyd RW, Krasinski J and Stroud C 1983 Opt. Commun. 45 416
[27] Shah V, Knappe S, Hollberg L and Kitching J 2007 Opt. Lett. 32 1244
[28] Lu Y, Zhang J Q, Cui J M, Cao D Y, Zhang S, Huang Y F, Li C F and Guo G C 2015 Phys. Rev. A 92 023420
[29] Lin GW, Yang J, Niu Y P and Gong S Q 2015 Chin. Phys. B 25 014201
[30] Selvan K 2018 Euro. Phys. J. D 72 1
[31] Kang H and Zhu Y 2003 Phys. Rev. Lett. 91 093601
[32] Zhang Y, Brown A W and Xiao M 2007 Phys. Rev. Lett. 99 123603
[33] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M and Adams C S 2010 Phys. Rev. Lett. 105 193603
[34] Stanojevic J, Grangier P and Cote R 2016 J. Phys. B: Atom. Mol. Opt. Phys. 49 124003
[35] Glorieux Q, Dubessay R, Guibal S, Guidoni L, Likforman J P, Coudreau T and Arimondo E 2010 Phys. Rev. A 82 033819
[36] Sun Q, Gu Y and Gong Q 2006 Journal of Modern Optics 53 1663
[37] Barkov L, Melik-Pashayev D and Zolotorev M 1989 Opt. Commun. 70 467
[38] Diddams S A, Diels J C and Atherton B 1998 Phys. Rev. A 58 2252
[39] Bergmann K, Theuer H and Shore B 1998 Rev. Mod. Phys. 70 1003
[40] Gerez P and Hartmann F 1977 IEEE Journal of Quantum Electronics 13 344
[41] Windholz L 2001 Physica Scripta 2001 81
[1] Electromagnetically-induced-absorption-like ground state cooling in a hybrid optomechanical system
Yaoyong Dong(董耀勇), Xuejun Zheng(郑学军), Denglong Wang(王登龙), and Peng Zhao(赵鹏). Chin. Phys. B, 2025, 34(4): 044203.
[2] Four-wave mixing Bragg scattering for small frequency shift from silicon coupled microrings
Chang Zhao(赵畅), Chao Wu(吴超), Pingyu Zhu(朱枰谕), Yuxing Du(杜昱星), Yan Wang(王焱), Miaomiao Yu(余苗苗), Kaikai Zhang(张凯凯), and Ping Xu(徐平). Chin. Phys. B, 2025, 34(1): 014206.
[3] Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings
Zelin Tan(谭泽林), Jianfa Zhang(张检发), Zhihong Zhu(朱志宏), Wei Chen(陈伟), Zhengzheng Shao(邵铮铮), Ken Liu(刘肯), and Shiqiao Qin(秦石乔). Chin. Phys. B, 2024, 33(6): 064205.
[4] Effects of cross-Kerr coupling on transmission spectrum of double-cavity optomechanical system
Li-Teng Chen(陈立滕), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Jie-Hui Huang(黄接辉), Nan-Run Zhou(周南润), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2024, 33(6): 064204.
[5] Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2024, 33(5): 050702.
[6] Extending microwave-frequency electric-field detection through single transmission peak method
ing Liu(刘青), Jin-Zhan Chen(陈进湛), He Wang(王赫), Jie Zhang(张杰), Wei-Min Ruan(阮伟民), Guo-Zhu Wu(伍国柱), Shun-Yuan Zheng(郑顺元), Jing-Ting Luo(罗景庭), and Zhen-Fei Song(宋振飞). Chin. Phys. B, 2024, 33(5): 054203.
[7] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[8] Microwave field sensor based on cold cesium Rydberg three-photon electromagnetically induced spectroscopy
Yuan-Yuan Wu(吴圆圆), Yun-Hui He(何云辉), Yue-Chun Jiao(焦月春), and Jian-Ming Zhao(赵建明). Chin. Phys. B, 2024, 33(11): 113201.
[9] Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles
Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲). Chin. Phys. B, 2023, 32(7): 074206.
[10] Dynamic light storage based on controllable electromagnetically induced transparency effect
Liu-Ying Zeng(曾柳莹), Jun-Fang Wu(吴俊芳), and Chao Li(李潮). Chin. Phys. B, 2023, 32(6): 064213.
[11] Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock
Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人). Chin. Phys. B, 2023, 32(5): 050601.
[12] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[13] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[14] Corrigendum to “Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(12): 129901.
[15] Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(11): 114205.
No Suggested Reading articles found!