Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 054204    DOI: 10.1088/1674-1056/adbd14
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Precision flatness measurement based on orbital angular momentum

Feifei Han(韩菲菲)1, Zhiwan Wang(王志琬)1, Le Wang(王乐)1, and Shengmei Zhao(赵生妹)1,2,3,†
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing 210003, China;
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We propose a method to measure the flatness of an object with a petal-like pattern generated by the interference of the measured orbital angular momentum (OAM) beam and the reference OAM beam which carries the opposite OAM state. By calculating the difference between the petal rotation angle without/with the object, the thickness information of the object, and then the flatness information, can be evaluated. Furthermore, the direction of the object's flatness can be determined by the petal's clockwise/counterclockwise rotation. We theoretically analyze the relationship between the object's thickness and petal rotation angle, and verify the proposed method by experiment. The experimental results show that the proposed method is a high precision flatness measurement and can obtain the convex/concave property of the flatness. For the 1.02 mm glass sample, the mean deviation of the flatness is 1.357×108 and the variance is 0.242×1016. For the 0.50 mm glass sample, the mean deviation of the flatness is 1.931×108 and the variance is 2.405×1016. Two different topological charges are adopted for the 2.00 mm glass sample, and their flatness deviations are 0.239×108 (=1) and 0.246×108 (=2), where their variances are 0.799×1018 (=1) and 0.775×1018 (=2), respectively. It is shown that the flatness measured by the proposed method is the same for the same sample when different topological charges are used. All results indicate that the proposed method may provide a high flatness measurement, and will be a promising way to measure the flatness.
Keywords:  orbital angular momentum      flatness measurement      interference      petal rotation angle  
Received:  20 November 2024      Revised:  27 February 2025      Accepted manuscript online:  06 March 2025
PACS:  42.50.Tx (Optical angular momentum and its quantum aspects)  
  42.25.Hz (Interference)  
  43.20.Ye (Measurement methods and instrumentation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62375140) and the Open Research Fund of National Laboratory of Solid State Microstructures (Grant No. M36055).
Corresponding Authors:  Shengmei Zhao     E-mail:  zhaosm@njupt.edu.cn

Cite this article: 

Feifei Han(韩菲菲), Zhiwan Wang(王志琬), Le Wang(王乐), and Shengmei Zhao(赵生妹) Precision flatness measurement based on orbital angular momentum 2025 Chin. Phys. B 34 054204

[1] Zhang M, Liu Y, Sun C, et al. 2020 Meas. Sci. Technol. 31 085006
[2] Xu C, Chen L, Chen S and Yin J 2009 Appl. Opt. 48 2536
[3] Fu Y, Shang Y, Hu W, et al. 2021 Acta Mech. Sin. 37 537
[4] Rusli and Amaratunga G A J 1995 Appl. Opt. 34 7914
[5] Koirala P, Attygalle D, Aryal P, et al. 2014 Thin Solid Films 571 442
[6] Yu Q, Zhang K, Cui C C, et al. 2018 Appl. Opt. 57 9722
[7] Park J, Kim J A, Ahn H, et al. 2019 Precis. Eng. Manuf. 20 463
[8] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[9] Liu J, Zheng S, Chen S, et al. 2022 Appl. Phys. Lett. 120 131103
[10] Wang X, Qian Y, Zhang J, et al. 2021 Photon. Res. 9 B81
[11] Sasaki S and Mcnulty I 2008 Phys. Rev. Lett. 100 124801
[12] Wang J, Yang J Y, Fazal I M, et al. 2012 Nat. Photonics 6 488
[13] Yao A M and Padgett M J 2011 Adv. Opt. Photonics 3 161
[14] Lei T, Zhang M, Li Y R, et al. 2015 Light Sci. Appl. 4 e257
[15] Tang H, Xu W, and Wu G H 2016 China. Commun. 13 153
[16] Wu J Z and Li Y J 2007 Chin. Phys. B 16 1334
[17] Guo J, Zheng S, Zhou K and Feng G 2021 Phys. Rev. Lett. 119 023504
[18] Yan Y, Li L, Xie G D, et al. 2016 Sci. Rep. 6 33482
[19] Lavery M P J, Speirits F C, Barnett S M and Padgett M J 2013 Science 341 537
[20] Guo J X, Ming S, Wu Y, Chen L Q and Zhang W P 2021 Opt. Express 29 208
[21] Zhai Y W, Fu S Y, Zhang J Q, et al. 2020 Appl. Phys. Express 13 022012
[22] Xiao S X, Zhang L D, Wei D, Liu F, Zhang Y and Xiao M 2018 Opt. Express 26 1997
[23] Zhai Y W, Fu S Y, Yin C, Zhou H and Gao C Q 2019 Opt. Express 27 15518
[24] Emile O and Emile J 2017 Opt. Express 42 354
[25] Zhu J L, Wang L, Ji J Y and Zhao S M 2022 Appl. Phys. Lett. 120 251104
[26] Zhu J L, Han F F, Wang L and Zhao S M 2024 J. Lightwave Technol. 42 1689
[27] Zhu J L, Zou F C, Wang L and Zhao S M 2024 Photonics 11 27
[28] Allen L, Padgett M and Babiker M 1999 Prog. Opt. 39 291
[1] Anomalous lattice vibration in monolayer MoS2 induced by DUV laser: A first-principles investigation
Weidong Wang(王卫东), Renhui Liu(刘仁辉), Ye Zhang(张也), Huaihong Guo(郭怀红), Jianqi Huang(黄建啟), Zhantong Liu(刘展彤), Heting Zhao(赵贺霆), Kai Wang(王凯), Bo Zhao(赵波), and Teng Yang(杨腾). Chin. Phys. B, 2025, 34(6): 066301.
[2] Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference
Shutao Hu(胡澍涛), Meng Qian(钱萌), Gang Zhang(张刚), and Bei Zhang(张蓓). Chin. Phys. B, 2025, 34(6): 068903.
[3] Fusion of fractional vortex pairs and their transition to integer vortex controlled by optical power
Chunzhi Sun(孙春志), Xiangwei Chen(陈向炜), Huizhong Xu, and Guo Liang(梁果). Chin. Phys. B, 2025, 34(5): 054202.
[4] Controlled propagation and particle manipulation of off-axis-rotating elliptical Gaussian beams in strong nonlocal media
Rong-Quan Chen(陈荣泉), Rui-Lin Xiao(肖瑞林), Wei Wang(王伟), Xi-Xi Chu(储茜茜), Yu-Qing Song(宋雨晴), Xu-Dong Hu(胡旭东), and Ming Chen(陈明). Chin. Phys. B, 2025, 34(3): 034205.
[5] Mask-coding-assisted continuous-variable quantum direct communication with orbital angular momentum multiplexing
Zhengwen Cao(曹正文), Yujie Wang(王禹杰), Geng Chai(柴庚), Xinlei Chen(陈欣蕾), and Yuan Lu(卢缘). Chin. Phys. B, 2025, 34(2): 020308.
[6] Side-channel free quantum digital signature with source monitoring
Luo-Jia Ma(马洛嘉), Ming-Shuo Sun(孙铭烁), Chun-Hui Zhang(张春辉), Hua-Jian Ding(丁华建), Xing-Yu Zhou(周星宇), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2025, 34(1): 010301.
[7] Optimization of extreme ultraviolet vortex beam based on high harmonic generation
Bo Xiao(肖礴), Yi-Wen Zhao(赵逸文), Fang-Jing Cheng(程方晶), Ge-Wen Wang(王革文), Wei Jiang(姜威), Yi-Chen Wang(王一琛), Jie Hu(胡杰), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2024, 33(5): 054209.
[8] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[9] A polarization sensitive interferometer: Delta interferometer
Chao-Qi Wei(卫超奇), Jian-Bin Liu(刘建彬), Yi-Fei Dong(董翼飞), Yu-Nong Sun(孙雨农), Yu Zhou(周宇), Huai-Bin Zheng(郑淮斌), Yan-Yan Liu(刘严严), Xiu-Sheng Yan(闫秀生), Fu-Li Li(李福利), and Zhuo Xu(徐卓). Chin. Phys. B, 2024, 33(3): 034203.
[10] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[11] Generating attosecond pulses with controllable polarization from cyclic H32+ molecules by bichromatic circular fields
Si-Qi Zhang(张思琪), Bing Zhang(张冰), Bo Yan(闫博), Xiang-Qian Jiang(姜向前), and Xiu-Dong Sun(孙秀冬). Chin. Phys. B, 2024, 33(2): 023301.
[12] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[13] Unconventional photon blockade in the two-photon Jaynes-Cummings model with two-frequency cavity drivings and atom driving
Xin Liu(刘欣), Meng-Yu Tian(田梦雨), Xiao-Ning Cui(崔晓宁), and Xin-He Zhang(张馨鹤). Chin. Phys. B, 2024, 33(2): 020308.
[14] Analysis and measurement of vibration characteristics of a hollowing defect based on a laser self-mixing interferometer
Yu-Xin Chen(陈煜昕), Jin-Bo Chen(陈金波), Peng Cao(曹鹏), You-Guang Zhao(赵有光), Jun Wang(王钧), Xu-Wei Teng(滕旭玮), and Chi Wang(王驰). Chin. Phys. B, 2024, 33(12): 124301.
[15] Optical image watermarking based on orbital angular momentum holography
Jialong Zhu(朱家龙), Jiaying Ji(季佳滢), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(12): 124202.
No Suggested Reading articles found!