Electromagnetically-induced-absorption-like ground state cooling in a hybrid optomechanical system
Yaoyong Dong(董耀勇)1, Xuejun Zheng(郑学军)1,2,†, Denglong Wang(王登龙)3, and Peng Zhao(赵鹏)4
1 School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510003, China; 2 School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China; 3 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; 4 Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China
Abstract We present a scheme for the electromagnetically-induced-absorption (EIA)-like ground state cooling in a hybrid optomechanical system which is combined by two-level quantum systems (qubits) and a high- optomechanical cavity. Under the weak qubit-cavity coupling, the system exhibits an EIA-like effect and this effect is caused by quantum destructive interference that is distinct from the conventional EIA effect driven by quantum constructive interference. More importantly, the EIA-like cooling mechanism can significantly enhance the cooling rate of the hybrid system, enabling the final phonon number beyond the classical cooling limit in the strong optomechanical coupling regime. Meanwhile, the cooling effects of the EIA case is better than that of the normalmode splitting case under the same optomechanical coupling strength and qubit dissipation rate.
(Quantum fluctuations, quantum noise, and quantum jumps)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11832016), the National Key Research and Development Program of China (Grant No. 2021YFB4000802), and the Steady Support Fund for the State Key Laboratory (Grant No. JBS242800180).
Yaoyong Dong(董耀勇), Xuejun Zheng(郑学军), Denglong Wang(王登龙), and Peng Zhao(赵鹏) Electromagnetically-induced-absorption-like ground state cooling in a hybrid optomechanical system 2025 Chin. Phys. B 34 044203
[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [2] Barzanjeh S, Xuereb A, Gröblacher S, Paternostro M, Regal C A and Weig E M 2022 Nat. Phys. 18 15 [3] Zhang Y, Hines A,Wilson D J and Guzman F 2023 Phys. Rev. Appl. 19 054004 [4] Mahdavi V, Saghafifar H and Davoudi-Darareh M 2024 Appl. Phys. B 130 99 [5] Zhang S D, Wang J, Zhang Q, Jiao Y F, Zuo Y L, Özdemir Ş K, Qiu C W, Nori F and Jing H 2024 Opt. Quantum 2 222 [6] Dong C, Wang Y and Wang H 2015 Natl. Sci. Rev. 2 510 [7] Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur E, Grebel J, Peairs G A, Povey R G and Cleland A N 2019 Science 364 368 [8] Fiaschi N, Hensen B,Wallucks A, Benevides R, Li J, Alegre T PMand Gröblacher S 2021 Nat. Photon. 15 817 [9] Bin Q, Jing H, Wu Y, Nori F and Lü X Y 2024 Phys. Rev. Lett. 133 043601 [10] Sekatski P, Aspelmeyer M and Sangouard N 2014 Phys. Rev. Lett. 112 080502 [11] Hauer B D, Combes J and Teufel J D 2023 Phys. Rev. Lett. 130 213604 [12] Tobar G,Manikandan S K, Beitel T and Pikovski I 2024 Nat. Commun. 15 7229 [13] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213 [14] Metcalfe M 2014 Appl. Phys. Rev. 1 031105 [15] O’Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M and Cleland A N 2010 Nature 464 697 [16] Mancini S, Vitali D and Tombesi P 1998 Phys. Rev. Lett. 80 688 [17] Metzger C H and Karrai K 2004 Nature 432 1002 [18] Poggio M, Degen C L, Mamin H J and Rugar D 2007 Phys. Rev. Lett. 99 017201 [19] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901 [20] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902 [21] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89 [22] Rivière R, Deléglise S,Weis S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2011 Phys. Rev. A 83 063835 [23] Clark J B, Lecocq F, Simmonds RW, Aumentado J and Teufel J D 2017 Nature 541 191 [24] Conteduca D, Reardon C, Scullion M G, Dell’Olio F, Armenise M N, Krauss T F and Ciminelli C 2017 APL Photon. 2 086101 [25] Fu Z and Yang L 2022 Phys. Rev. A 105 L061504 [26] Sillanpää M A, Park J I and Simmonds R W 2007 Nature 449 438 [27] Jiang X, Shao L, Zhang S X, Yi X,Wiersig J,Wang L, Gong Q, Lončar M, Yang L and Xiao Y F 2017 Science 358 344 [28] Seri A, Corrielli G, Lago-Rivera D, Lenhard A, de Riedmatten H, Osellame R and Mazzera M 2018 Optica 5 934 [29] Dobrindt J M, Wilson-Rae I and Kippenberg T J 2008 Phys. Rev. Lett. 101 263602 [30] Liu Y C, Xiao Y F, Luan X and Wong C W 2013 Phys. Rev. Lett. 110 153606 [31] Liu Y C, Shen Y F, Gong Q and Xiao Y F 2014 Phys. Rev. A 89 053821 [32] Chen X, Liu Y C, Peng P, Zhi Y and Xiao Y F 2015 Phys. Rev. A 92 033841 [33] Zhou B and Li G 2016 Phys. Rev. A 94 033809 [34] Liu N, Chang R, Zhang S and Liang J Q 2022 Int. J. Theor. Phys. 61 120 [35] Li T, Zhang S, Huang H L, Li F G, Fu X Q,Wang X and BaoWS 2018 J. Phys. B: At. Mol. Opt. Phys. 51 045503 [36] Guo Y, Li K, Nie W and Li Y 2014 Phys. Rev. A 90 053841 [37] Liu Y C, Xiao Y F, Luan X, Gong Q and Wong C W 2015 Phys. Rev. A 91 033818 [38] Wang J 2021 Chin. Phys. B 30 024204 [39] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [40] Taichenachev A V., Tumaikin A M and Yudin V I 1999 Phys. Rev. A 61 011802 [41] Fu G, Li X, Zhuang Z, Zhang L, Yang L, Li X, Han L, Manson N B and Wei C 2008 Phys. Lett. A 372 176 [42] Zhou Y L, Yan D and Li W 2022 Phys. Rev. A 105 053714 [43] Braunstein D and Shuker R 2001 Phys. Rev. A 64 053812 [44] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098 [45] Genes C, Vitali D and Tombesi P 2008 Phys. Rev. A 77 050307 [46] Wu H, Li Y, Yang Z B and Zheng S B 2017 Phys. Rev. A 95 013842 [47] Nie W, Chen A and Lan Y 2015 Opt. Express 23 30970 [48] Sarma B and Sarma A K 2016 Phys. Rev. A 93 033845 [49] Zhang X Y, Zhou Y H, Guo Y Q and Yi X X 2018 Phys. Rev. A 98 033832 [50] Mirza I M, Ge W and Jing H 2019 Opt. Express 27 25515 [51] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H and Zhu S L 2020 Phys. Rev. A 101 053432 [52] Sun Y, Yang Y, Chen H and Zhu S 2015 Sci. Rep. 5 16370 [53] Tassin P, Zhang L, Zhao R, Jain A, Koschny T and Soukoulis C M 2012 Phys. Rev. Lett. 109 187401 [54] Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J and Kimble H J 2006 Nature 443 671 [55] Barclay P E, Santori C, Fu K M, Beausoleil R G and Painter O 2009 Opt. Express 17 8081 [56] Verhagen E, Deléglise S, Weis S, Schliesser A and Kippenberg T J 2012 Nature 482 63 [57] Poggiali F, Cappellaro P and Fabbri N 2017 Phys. Rev. B 95 195308 [58] Panadero I, Espinós H, Tsunaki L, Volkova K, Tobalina A, Casanova J, Acedo P, Naydenov B, Puebla R and Torrontegui E 2024 Phys. Rev. Appl 22 014035 [59] Liu T, Zhao J L, Guo B Q, Wu Q C, Zhou Y H and Yang C P 2021 Phys. Rev. A 103 023706 [60] Kellerbauer A, Fischer A and Warring U 2014 Phys. Rev. A 89 043430 [61] Li B, Li P B, Zhou Y, Ma S L and Li F L 2017 Phys. Rev. A 96 032342 [62] Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.