Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050302    DOI: 10.1088/1674-1056/adbee4
Special Issue: SPECIAL TOPIC — Quantum communication and quantum network
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Improving the performance of reference-frame-independent measurement-device-independent quantum key distribution in hybrid channels

Yan-Mei Zhao(赵燕美), Chun Zhou(周淳)†, Xiao-Lei Jiang(姜晓磊), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Yang Zhou(周砚扬), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏)‡
Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China
Abstract  The robustness of reference-frame-independent measurement-device-independent quantum key distribution (RFI-MDI-QKD) against detection system vulnerabilities and its tolerance to reference frame drifts make it an ideal choice for hybrid channels. However, the impact of atmospheric turbulence on transmittance fluctuations remains a significant challenge for enhancing the performance of RFI-MDI-QKD. In this paper, we apply prefixed-threshold real-time selection and advantage distillation techniques to RFI-MDI-QKD in a hybrid channels scenario. Then, we analytically derive formulas for secret key rate in hybrid channels. Simulation results show that our modified scheme has apparent advances in both maximum tolerant loss and secure key rate compared to the fiber-only channel. Specifically, the result demonstrates that the maximum transmission distance can be improved by 15 km and 28 km when N=1012 and 1011. Our work not only provides a more robust key distribution protocol but also establishes a solid theoretical foundation for enhancing the performance of RFI-MDI-QKD in hybrid channels.
Keywords:  quantum key distribution      measurement-device-independent      hybrid channels  
Received:  09 January 2025      Revised:  25 February 2025      Accepted manuscript online:  11 March 2025
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505261, 62101597, 61605248, and 61675235), the National Key Research and Development Program of China (Grant No. 2020YFA0309702),the Natural Science Foundation of Henan Province (Grant Nos. 202300410534 and 202300410534), and the Anhui Initiative in Quantum Information Technologies.
Corresponding Authors:  Chun Zhou, Wan-Su Bao     E-mail:  winmaxsky@163.com;bws@qiclab.cn

Cite this article: 

Yan-Mei Zhao(赵燕美), Chun Zhou(周淳), Xiao-Lei Jiang(姜晓磊), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Yang Zhou(周砚扬), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏) Improving the performance of reference-frame-independent measurement-device-independent quantum key distribution in hybrid channels 2025 Chin. Phys. B 34 050302

[1] Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501
[2] Zhang Q, Xu F H, Chen Y A, et al. 2018 Opt. Express 26 24260
[3] Gibney E 2016 Nature 535 478
[4] Chen J P, Zhang C, Liu Y C, et al. 2020 Phys. Rev. Lett. 124 070501
[5] Liu H, Jiang C, Zhu H T, et al. 2021 Phys. Rev. Lett. 126 250502
[6] Wang S, Yin Z Q, He D Y, et al. 2022 Nat. Photon. 16 154
[7] Liu Y, Zhang W J, Jiang C, et al. 2023 Phys. Rev. Lett. 130 210801
[8] Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43
[9] Yin J, Cao Y, Li Y H, et al. 2017 Phys. Rev. Lett. 119 200501
[10] Yin J, Li Y H, Liao S K, et al. 2020 Nature 582 501
[11] Maeda K, Sasaki T and Koashi M 2019 Nat. Commun. 10 3140
[12] Li W T, Wang L, Li W, et al. 2022 Chin. Phys. B 31 050310
[13] Xie Y M, Lu Y S, Weng C X, et al. 2022 PRX Quantum 3 020315
[14] Ju X X, Zhong W, Sheng Y B, et al. 2022 Chin. Phys. B 31 100302
[15] Sun M, Zhang C M, Zhang R, et al. 2024 Chin. Phys. B 33 110302
[16] Yang K X, Mao Y L, Chen H, et al. 2020 Phys. Rev. Lett. 133 210803
[17] Liao S K, Yong H L, Liu C, et al. 2017 Nat. Photonics 11 509
[18] Gong Y H, Yang K X, Yong H L, et al. 2018 Nat. Photonics 26 18897
[19] Avesani M, Calderaro L, Schiavon M, et al. 2021 npj Quantum Inf. 7 93
[20] Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214
[21] Li Y H, Li S L, Hu X L, et al. 2023 Phys. Rev. Lett. 131 100802
[22] Yin Z Q, Wang S, Chen W, et al. 2014 Quantum Inf. Process. 13 1237
[23] Wang C, X. Song T, Yin Z Q, et al. 2015 Phys. Rev. Lett. 115 160502
[24] Wang C, Yin Z Q, Wang S, et al. 2017 Optica 4 1016
[25] Zhang C M, Zhu J R and Wang Q 2017 Phys. Rev. A 95 032309
[26] Zhou X Y, Ding H J, Sun M S, et al. 2021 Phys. Rev. Appl. 15 064016
[27] Fan-Yuan G J, Lu F Y, Wang S, et al. 2022 Optica 9 812823
[28] Vasylyev D Y, Semenov A, VogelW, et al. 2017 Phys. Rev. A 96 043856
[29] Semenov A and Vogel W 2009 Phys. Rev. A 80 021802
[30] Schmitt-Manderbach T, Weier H, Fürst M, et al. 2007 Phys. Rev. Lett. 98 010504
[31] Erven C, Heim B, Meyer-Scott E, et al. 2012 New J. Phys. 14 123018
[32] Vallone G, Marangon D G, Canale M, et al. 2015 Phys. Rev. A 91 042320
[33] Wang W Y, Xu F H and Lo H K 2018 Phys. Rev. A 97 032337
[34] Li H W, Zhang C M, Jiang M S, et al. 2022 Commun. Phys. 5 53
[35] Zhu J R, Zhang C M, Wang R, et al. 2023 Opt. Lett. 48 542545
[36] Jiang X L, Wang Y, Li J J, et al. 2023 Opt. Express 31 9196
[37] Vasylyev D Y, Semenov A and Vogel W 2012 Phys. Rev. Lett. 108 220501
[38] Vasylyev D Y, Semenov A and Vogel W 2016 Phys. Rev. Lett. 117 090501
[39] Vasylyev D Y, Vogel W and Semenov A 2018 Phys. Rev. A 97 063852
[40] Klen M and Semenov A 2023 Phys. Rev. A 108 033718
[41] Andrews L C and Phillips R L 2005 Laser Beam Propagation Through Random Media 2nd Edn.
[42] Ricklin J C, Hammel S M, Eaton F D, et al. 2006 J. Opt. Fiber Commun. Reports 3 111
[43] Lu Q H, Wang F X, Chen W, et al. 2024 Sci. China Inf. Sci. 67 142503
[44] Gottesman D, Lo H K, Lükenhaus N et al. 2004 Internation Symposium onInformation Theory IEEE 136
[45] Lu F Y, Yin Z Q, Fan-Yuan G J, et al. 2020 Phys. Rev. A 101 052318
[46] Li H W, Hao C P, Chen Z J, et al. 2024 Sci. China-Phys. Mech. Astron. 67 270313
[47] Zhu Z D, Chen D, Zhao S H, et al. 2019 Quantum Inf. Process. 18 1
[48] Xue Y, Shi L, Chen W, et al. 2020 Phys. Rev. A 102 062602
[49] Yu Y, Xu R, Wang L, et al. 2022 Entropy 24 344
[1] Multi-protocol quantum key distribution decoding chip
Chun-Xue Zhang(张春雪), Jian-Guang Li(李建光), Yue Wang(王玥), Wei Chen(陈巍), Jia-Shun Zhang(张家顺), and Jun-Ming An(安俊明). Chin. Phys. B, 2025, 34(5): 050303.
[2] Asymmetric mode-pairing quantum key distribution with advantage distillation
Hai-Tao Wang(汪海涛), Chun Zhou(周淳), Yi-Fei Lu(陆宜飞), Chen-Peng Hao(郝辰鹏), Yan-Mei Zhao(赵燕美), Yan-Yang Zhou(周砚扬), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2025, 34(4): 040305.
[3] Effect of pseudo-random number on the security of quantum key distribution protocol
Xiao-Liang Yang(杨晓亮), Yu-Qing Li(李毓擎), and Hong-Wei Li(李宏伟). Chin. Phys. B, 2025, 34(2): 020301.
[4] Improved reference-frame-independent quantum key distribution with intensity fluctuations
Zi-Qi Chen(陈子骐), Hao-Bing Sun(孙昊冰), Ming-Shuo Sun(孙铭烁), and Qin Wang(王琴). Chin. Phys. B, 2025, 34(2): 020302.
[5] Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering
Chun Zhou(周淳), Yan-Mei Zhao(赵燕美), Xiao-Liang Yang(杨晓亮), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Xiao-Lei Jiang(姜晓磊), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Mu-Sheng Jiang(江木生), Xiang Wang(汪翔), Hai-Long Zhang(张海龙), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2024, 33(8): 080306.
[6] A new quantum key distribution resource allocation and routing optimization scheme
Lin Bi(毕琳), Xiaotong Yuan(袁晓同), Weijie Wu(吴炜杰), and Shengxi Lin(林升熙). Chin. Phys. B, 2024, 33(3): 030309.
[7] Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
Le-Chen Xu(徐乐辰), Chun-Hui Zhang(张春辉), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(2): 020313.
[8] Improved model on asynchronous measurement-device-independent quantum key distribution with realistic devices
Mingshuo Sun(孙铭烁), Chun-Hui Zhang(张春辉), Rui Zhang(章睿), Xing-Yu Zhou(周星宇), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(11): 110302.
[9] Reference-frame-independent quantum key distribution with two-way classical communication
Chun Zhou(周淳), Hai-Tao Wang(汪海涛), Yi-Fei Lu(陆宜飞), Xiao-Lei Jiang(姜晓磊), Yan-Mei Zhao(赵燕美), Yu Zhou(周雨), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Yang Zhou(周砚扬), Xiang Wang(汪翔), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2024, 33(10): 100302.
[10] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
Jiang-Ping Zhou(周江平), Yuan-Yuan Zhou(周媛媛), Xue-Jun Zhou(周学军), and Xuan Bao(暴轩). Chin. Phys. B, 2023, 32(8): 080306.
[11] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[12] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[13] Security of the traditional quantum key distribution protocols with finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[14] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[15] Research progress in quantum key distribution
Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
No Suggested Reading articles found!