Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050301    DOI: 10.1088/1674-1056/adbd25
Special Issue: SPECIAL TOPIC — Quantum communication and quantum network
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Free-space discrete-variable quantum key distribution in a mountainous environment

Xing-Ran Chen(陈星燃), Jian-Hong Shi(史建红), and Hai-Long Zhang(张海龙)†
Henan Key Laboratory of Quantum Information and Cryptography, SSF, IEU, Zhengzhou 450001, China
Abstract  Free-space quantum key distribution (QKD) offers broader geographical coverage and more flexible system deployment than fiber-based systems. However, the free-space environment is highly complex, and various attenuation factors can significantly reduce the key distribution efficiency or even lead to encoding failures. This paper discusses and analyzes the impact of turbulence and fog in mountainous environments on free-space discrete-variable quantum key distribution. Through numerical simulation, this study examines the effects of altitude and visibility on transmittance and turbulence intensity, finding that turbulence intensity decreases with increasing altitude while transmittance increases; improvements in visibility also lead to increased transmittance. Beam wandering due to turbulence is also dominant. Combining these factors, the effects on the total transmittance and the secret key rate are taken into consideration. Our work could provide a reference for the deployment of practical QKD systems in actual mountainous environments.
Keywords:  free-space      DV-QKD      mountainous environment      secret key rate  
Received:  29 November 2024      Revised:  05 March 2025      Accepted manuscript online:  06 March 2025
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Corresponding Authors:  Hai-Long Zhang     E-mail:  zhhl049@126.com

Cite this article: 

Xing-Ran Chen(陈星燃), Jian-Hong Shi(史建红), and Hai-Long Zhang(张海龙) Free-space discrete-variable quantum key distribution in a mountainous environment 2025 Chin. Phys. B 34 050301

[1] Bennett C H, Brassard G, Popescu S, et al. 1995 Phys. Rev. Lett. 76 722
[2] Wang Y, Bao W S and Li H W 2014 Chin. Phys. B 23 080803
[3] Zhao Y B, Han Z F, Chen J J, Gu Y Z and Guo G C 2008 Chin. Phys. Lett. 25 3138
[4] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and Guo G C 2008 Chin. Phys. Lett. 25 3547
[5] LiuWQ, Peng J, Huang P,Wang S andWang T 2018 Chin. Phys. B 27 070305
[6] Primaatmaja W I, Liang C C and Zhang G 2022 Quantum Journal 6 613
[7] Guo H, Li Z Y and Peng X 2016 Quantum Cryptography (Beijing: National Defense Industry Press)
[8] Vasylyev D, Semenov A A, Vogel W, et al. 2017 Phys. Rev. A 96 043856
[9] Young C Y, Andrews L C and Ishimaru A 1998 Appl. Opt. 37 765560
[10] Liu Y, Yue W Z, Fan P L, Zhang Z T and Huang J N 2017 Ecological Indicators 81 048
[11] Kelly D and Andrews L C 1999 Waves Random Media 9 307
[12] Vaslylyev D, Semenov A A and Vogel W 2016 Phys. Rev. Lett. 117 090501
[13] Sherif G, Heba A.F, Ahmed A and Moustafa H 2016 Sixth International Conference on Digital Information Processing and Communications (ICDIPC), Beirut, Lebanon pp. 151-155
[14] George C 1980 Appl. Opt. 19 574
[15] Parenti R R and Sasiela R J 1994 Opt. Soc. Am. A 11 288
[16] Muhammad S A, Laszlo C H, Sajid S M, et al. 2009 Journal of Communications 4 8
[17] Ricklin J, Hammel S, Eaton F, et al. 2006 Opti. Fiber. Common. Rep 3 10297
[18] Tar K 2008 Renewable and Sustainable Energy Reviews 12 014
[19] Mohammed N A,Wakeel A and Mostafa H A 2012 International Journal of Video and Image Processing and Network 12 1
[20] Matest M A and Michail S M 1971 Theory of Incomplete Cylindrical Functions and their Applications (Berlin, Springer)
[21] Nadeem F, Flecker B, Leitgeb E, et al. 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, July 25-25, 2008, Graz, Austria, pp. 278-282
[22] Vasylyev D, Semenov A A and Vogel W 2012 Phys. Rev. Lett. 108 220501
[23] Gottesman D, Lo H K, Lutkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[24] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[25] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[26] Wang X B 2005 Phys. Rev. Lett. 94 230503
[27] Wang X B 2005 Phys. Rev. A 72 012322
[1] Robust free-space optical frequency transfer in time-varying link distances conditions
Zhou Tong(童周), Lei Liu(刘雷), Jia-Liang Wang(王家亮), Qian Cao(操前), Zhi-Cheng Jin(金志成), Kang Ying(应康), Shen-Sheng Han(韩申生), Zheng-Fu Han(韩正甫), and You-Zhen Gui(桂有珍). Chin. Phys. B, 2024, 33(2): 020601.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[5] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
[6] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[7] A new method of calculating the orbital angular momentum spectra of Laguerre-Gaussian beams in channels with atmospheric turbulence
Xiao-zhou Cui(崔小舟), Xiao-li Yin(尹霄丽), Huan Chang(常欢), Zhi-chao Zhang(张志超), Yong-jun Wang(王拥军), Guo-hua Wu(吴国华). Chin. Phys. B, 2017, 26(11): 114207.
[8] Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system
Li Zou(邹丽), Le Wang(王乐), Sheng-Mei Zhao(赵生妹), Han-Wu Chen(陈汉武). Chin. Phys. B, 2016, 25(11): 114215.
[9] Security of a practical semi-device-independent quantum key distribution protocol against collective attacks
Wang Yang (汪洋), Bao Wan-Su (鲍皖苏), Li Hong-Wei (李宏伟), Zhou Chun (周淳), Li Yuan (李源). Chin. Phys. B, 2014, 23(8): 080303.
[10] Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler
Luo Wen (罗文), Geng Chao (耿超), Wu Yun-Yun (武云云), Tan Yi (谭毅), Luo Qi (罗奇), Liu Hong-Mei (刘红梅), Li Xin-Yang (李新阳). Chin. Phys. B, 2014, 23(1): 014207.
[11] Interaction of two edge dislocations in free-space propagation
He De(何德), Gao Zeng-Hui(高曾辉), Yan Hong-Wei(闫红卫), and Lü Bai-Da(吕百达) . Chin. Phys. B, 2011, 20(1): 014201.
[12] Partially coherent nonparaxial modified Bessel--Gauss beams
Gao Zeng-Hui (高曾辉), Lü Bai-Da (吕百达). Chin. Phys. B, 2006, 15(2): 334-339.
No Suggested Reading articles found!