Abstract Mode-pairing quantum key distribution (MP-QKD) is an excellent scheme that can exceed the repeaterless rate-transmittance bound without complex phase locking. Nevertheless, MP-QKD usually needs to ensure that the communication distances of the two channels are equal. To address the problem, the asymmetric MP-QKD protocol is proposed. In this paper, we enhance the performance of the asymmetric MP-QKD protocol based on the advantage distillation (AD) method without modifying the quantum process. The simulation results show that the AD method can extend the communication distance by about 70 km in the case of asymmetry. And we observe that as the misalignment error increases, the AD method further increases the expandable communication distance. Our work can further enhance the robustness and promote the practical application of the asymmetric MP-QKD.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505261, 62101597, 61605248, and 61675235), the National Key Research and Development Program of China (Grant No. 2020YFA0309702), the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan Province (Grant Nos. 202300410534 and 202300410532), and the Anhui Initiative in Quantum Information Technologies.
Corresponding Authors:
Chun Zhou
E-mail: winmaxsky@163.com
Cite this article:
Hai-Tao Wang(汪海涛), Chun Zhou(周淳), Yi-Fei Lu(陆宜飞), Chen-Peng Hao(郝辰鹏), Yan-Mei Zhao(赵燕美), Yan-Yang Zhou(周砚扬), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏) Asymmetric mode-pairing quantum key distribution with advantage distillation 2025 Chin. Phys. B 34 040305
[1] Bennett C H and Brassard G 1984 Quantum cryptography: Public key distribution and coin tossing (New York: IEEE) p. 175 [2] Ekert A K 1991 Phys. Rev. Lett. 67 661 [3] Lo H K and Chau H F 1999 Science 283 2050 [4] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441 [5] Kraus B, Gisin N and Renner R 2005 Phys. Rev. Lett. 95 080501 [6] Hwang W Y 2003 Phys. Rev. Lett. 91 057901 [7] Wang X B 2003 Phys. Rev. Lett. 94 230503 [8] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504 [9] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502 [10] Zhang C X, Wu D, Cui P W, et al. 2023 Chin. Phys. B 32 124207 [11] Ma H Q, Han Y X, Dou T Q and Li P Y 2023 Chin. Phys. B 32 020304 [12] Luo H, Wang Y J, Ye W, et al. 2022 Chin. Phys. B 31 020306 [13] Peng C Z, Zhang J, Yang D, et al. 2007 Phys. Rev. Lett. 98 010505 [14] Wang S, Chen W, Guo J F, et al. 2012 Opt. Lett. 37 1008 [15] Liu Y, Chen T Y, Wang L J, et al. 2013 Phys. Rev. Lett. 111 130502 [16] Tang Y L, Yin H L, Chen S J, et al. 2014 Phys. Rev. Lett. 113 190501 [17] Wang S, Yin Z Q, Chen W, et al. 2015 Nat. Photon. 9 832 [18] Takesue Hi, Sasaki T, Tamaki K and Koashi M 2015 Nat. Photon. 9 827 [19] Wang C, Song X T, Yin Z Q, et al. 2015 Phys. Rev. Lett. 115 160502 [20] Yin H L, Chen T Y, Yu Z W, et al. 2016 Phys. Rev. Lett. 117 190501 [21] Tang Y L, Yin H L, Zhao Q, et al. 2016 Phys. Rev. X 6 011024 [22] Wang C, Yin Z Q, Wang S, et al. 2017 Optica 4 1016 [23] Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43 [24] Grünenfelder F, Boaron A, Resta G V, et al. 2023 Nat. Photon. 17 422 [25] Xu F H, Ma X F, Zhang Q, et al. 2020 Rev. Mod. Phys. 92 025002 [26] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 [27] Ma X F and Razavi M 2012 Phys. Rev. A 86 062319 [28] Yu Z W, Zhou Y H and Wang X B 2013 Phys. Rev. A 88 062339 [29] Curty M, Xu F H, Cui W, et al. 2014 Nat. Commun. 5 3732 [30] Yin Z Q, Fung C H F, Ma X F, et al. 2014 Phys. Rev. A 90 052319 [31] Yin Z Q, Wang S, Chen W, et al. 2014 Quantum Inf. Process. 13 1237 [32] Yu Z W, Zhou Y H and Wang X B 2015 Phys. Rev. A 91 032318 [33] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 1 [34] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400 [35] Ma X F, Zeng P and Zhou H Y 2018 Phys. Rev. X 8 031043 [36] Lin J and Lütkenhaus N 2018 Phys. Rev. A 98 042332 [37] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323 [38] Cui C H, Yin Z Q, Wang R, et al. 2019 Phys. Rev. Appl. 11 034053 [39] Zeng P, Zhou H Y, Wu W J and Ma X F 2022 Nat. Commun. 13 3903 [40] Xie Y M, Lu Y S, Weng C X, et al. 2022 PRX Quantum 3 020315 [41] Xie Y M, Bai J L, Lu Y S, et al. 2023 Phys. Rev. Appl. 19 054070 [42] Bai J L, Xie Y M, Fu Y, et al. 2023 Opt. Lett. 48 3551 [43] Zhou L, Lin J P, Xie Y M, et al. 2023 Phys. Rev. Lett. 130 250801 [44] Zhu H T, Huang Y Z, Liu H, et al. 2023 Phys. Rev. Lett. 130 030801 [45] Ge C F, Zhou L, Lin J P, et al. 2024 Quantum Sci. Technol. 10 015046 [46] Lu Z Y, Wang G, Li C and Cao Z 2024 Phys. Rev. A 109 012401 [47] Luo D, Liu X, Qin K B, et al. 2024 Phys. Rev. A 110 022605 [48] Liu X, Luo D, Zhang Z R and Wei K J 2023 Phys. Rev. A 107 062613 [49] Maurer U M 1993 IEEE Trans. Inf. Theory 39 733 [50] Tan E Y Z, Lim C CWand Renner R 2020 Phys. Rev. Lett. 124 020502 [51] Li H W, Zhang C M, Jiang M S and Cai Q Y 2022 Commun. Phys. 5 53 [52] Wang R Q, Zhang C M, Yin Z Q, et al. 2022 New J. Phys. 24 073049 [53] Li H W, Wang R Q, Zhang C M and Cai Q Y 2023 Quantum 7 1201 [54] Zhu J R, Zhang C M, Wang R and Li H W 2023 Opt. Lett. 48 542 [55] Jiang X L, Wang Y, Li J J, et al. 2023 Opt. Express 31 9196
Research progress in quantum key distribution Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.