Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040305    DOI: 10.1088/1674-1056/adbb5c
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Asymmetric mode-pairing quantum key distribution with advantage distillation

Hai-Tao Wang(汪海涛), Chun Zhou(周淳)†, Yi-Fei Lu(陆宜飞), Chen-Peng Hao(郝辰鹏), Yan-Mei Zhao(赵燕美), Yan-Yang Zhou(周砚扬), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏)
Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China
Abstract  Mode-pairing quantum key distribution (MP-QKD) is an excellent scheme that can exceed the repeaterless rate-transmittance bound without complex phase locking. Nevertheless, MP-QKD usually needs to ensure that the communication distances of the two channels are equal. To address the problem, the asymmetric MP-QKD protocol is proposed. In this paper, we enhance the performance of the asymmetric MP-QKD protocol based on the advantage distillation (AD) method without modifying the quantum process. The simulation results show that the AD method can extend the communication distance by about 70 km in the case of asymmetry. And we observe that as the misalignment error increases, the AD method further increases the expandable communication distance. Our work can further enhance the robustness and promote the practical application of the asymmetric MP-QKD.
Keywords:  quantum key distribution      asymmetric mode-pairing      advantage distillation  
Received:  31 December 2024      Revised:  11 February 2025      Accepted manuscript online:  28 February 2025
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505261, 62101597, 61605248, and 61675235), the National Key Research and Development Program of China (Grant No. 2020YFA0309702), the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan Province (Grant Nos. 202300410534 and 202300410532), and the Anhui Initiative in Quantum Information Technologies.
Corresponding Authors:  Chun Zhou     E-mail:  winmaxsky@163.com

Cite this article: 

Hai-Tao Wang(汪海涛), Chun Zhou(周淳), Yi-Fei Lu(陆宜飞), Chen-Peng Hao(郝辰鹏), Yan-Mei Zhao(赵燕美), Yan-Yang Zhou(周砚扬), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏) Asymmetric mode-pairing quantum key distribution with advantage distillation 2025 Chin. Phys. B 34 040305

[1] Bennett C H and Brassard G 1984 Quantum cryptography: Public key distribution and coin tossing (New York: IEEE) p. 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Lo H K and Chau H F 1999 Science 283 2050
[4] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[5] Kraus B, Gisin N and Renner R 2005 Phys. Rev. Lett. 95 080501
[6] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[7] Wang X B 2003 Phys. Rev. Lett. 94 230503
[8] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[9] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
[10] Zhang C X, Wu D, Cui P W, et al. 2023 Chin. Phys. B 32 124207
[11] Ma H Q, Han Y X, Dou T Q and Li P Y 2023 Chin. Phys. B 32 020304
[12] Luo H, Wang Y J, Ye W, et al. 2022 Chin. Phys. B 31 020306
[13] Peng C Z, Zhang J, Yang D, et al. 2007 Phys. Rev. Lett. 98 010505
[14] Wang S, Chen W, Guo J F, et al. 2012 Opt. Lett. 37 1008
[15] Liu Y, Chen T Y, Wang L J, et al. 2013 Phys. Rev. Lett. 111 130502
[16] Tang Y L, Yin H L, Chen S J, et al. 2014 Phys. Rev. Lett. 113 190501
[17] Wang S, Yin Z Q, Chen W, et al. 2015 Nat. Photon. 9 832
[18] Takesue Hi, Sasaki T, Tamaki K and Koashi M 2015 Nat. Photon. 9 827
[19] Wang C, Song X T, Yin Z Q, et al. 2015 Phys. Rev. Lett. 115 160502
[20] Yin H L, Chen T Y, Yu Z W, et al. 2016 Phys. Rev. Lett. 117 190501
[21] Tang Y L, Yin H L, Zhao Q, et al. 2016 Phys. Rev. X 6 011024
[22] Wang C, Yin Z Q, Wang S, et al. 2017 Optica 4 1016
[23] Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43
[24] Grünenfelder F, Boaron A, Resta G V, et al. 2023 Nat. Photon. 17 422
[25] Xu F H, Ma X F, Zhang Q, et al. 2020 Rev. Mod. Phys. 92 025002
[26] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[27] Ma X F and Razavi M 2012 Phys. Rev. A 86 062319
[28] Yu Z W, Zhou Y H and Wang X B 2013 Phys. Rev. A 88 062339
[29] Curty M, Xu F H, Cui W, et al. 2014 Nat. Commun. 5 3732
[30] Yin Z Q, Fung C H F, Ma X F, et al. 2014 Phys. Rev. A 90 052319
[31] Yin Z Q, Wang S, Chen W, et al. 2014 Quantum Inf. Process. 13 1237
[32] Yu Z W, Zhou Y H and Wang X B 2015 Phys. Rev. A 91 032318
[33] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 1
[34] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[35] Ma X F, Zeng P and Zhou H Y 2018 Phys. Rev. X 8 031043
[36] Lin J and Lütkenhaus N 2018 Phys. Rev. A 98 042332
[37] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323
[38] Cui C H, Yin Z Q, Wang R, et al. 2019 Phys. Rev. Appl. 11 034053
[39] Zeng P, Zhou H Y, Wu W J and Ma X F 2022 Nat. Commun. 13 3903
[40] Xie Y M, Lu Y S, Weng C X, et al. 2022 PRX Quantum 3 020315
[41] Xie Y M, Bai J L, Lu Y S, et al. 2023 Phys. Rev. Appl. 19 054070
[42] Bai J L, Xie Y M, Fu Y, et al. 2023 Opt. Lett. 48 3551
[43] Zhou L, Lin J P, Xie Y M, et al. 2023 Phys. Rev. Lett. 130 250801
[44] Zhu H T, Huang Y Z, Liu H, et al. 2023 Phys. Rev. Lett. 130 030801
[45] Ge C F, Zhou L, Lin J P, et al. 2024 Quantum Sci. Technol. 10 015046
[46] Lu Z Y, Wang G, Li C and Cao Z 2024 Phys. Rev. A 109 012401
[47] Luo D, Liu X, Qin K B, et al. 2024 Phys. Rev. A 110 022605
[48] Liu X, Luo D, Zhang Z R and Wei K J 2023 Phys. Rev. A 107 062613
[49] Maurer U M 1993 IEEE Trans. Inf. Theory 39 733
[50] Tan E Y Z, Lim C CWand Renner R 2020 Phys. Rev. Lett. 124 020502
[51] Li H W, Zhang C M, Jiang M S and Cai Q Y 2022 Commun. Phys. 5 53
[52] Wang R Q, Zhang C M, Yin Z Q, et al. 2022 New J. Phys. 24 073049
[53] Li H W, Wang R Q, Zhang C M and Cai Q Y 2023 Quantum 7 1201
[54] Zhu J R, Zhang C M, Wang R and Li H W 2023 Opt. Lett. 48 542
[55] Jiang X L, Wang Y, Li J J, et al. 2023 Opt. Express 31 9196
[1] Improving the performance of reference-frame-independent measurement-device-independent quantum key distribution in hybrid channels
Yan-Mei Zhao(赵燕美), Chun Zhou(周淳), Xiao-Lei Jiang(姜晓磊), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Yang Zhou(周砚扬), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2025, 34(5): 050302.
[2] Effect of pseudo-random number on the security of quantum key distribution protocol
Xiao-Liang Yang(杨晓亮), Yu-Qing Li(李毓擎), and Hong-Wei Li(李宏伟). Chin. Phys. B, 2025, 34(2): 020301.
[3] Improved reference-frame-independent quantum key distribution with intensity fluctuations
Zi-Qi Chen(陈子骐), Hao-Bing Sun(孙昊冰), Ming-Shuo Sun(孙铭烁), and Qin Wang(王琴). Chin. Phys. B, 2025, 34(2): 020302.
[4] Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering
Chun Zhou(周淳), Yan-Mei Zhao(赵燕美), Xiao-Liang Yang(杨晓亮), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Xiao-Lei Jiang(姜晓磊), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Mu-Sheng Jiang(江木生), Xiang Wang(汪翔), Hai-Long Zhang(张海龙), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2024, 33(8): 080306.
[5] A new quantum key distribution resource allocation and routing optimization scheme
Lin Bi(毕琳), Xiaotong Yuan(袁晓同), Weijie Wu(吴炜杰), and Shengxi Lin(林升熙). Chin. Phys. B, 2024, 33(3): 030309.
[6] Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
Le-Chen Xu(徐乐辰), Chun-Hui Zhang(张春辉), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(2): 020313.
[7] Improved model on asynchronous measurement-device-independent quantum key distribution with realistic devices
Mingshuo Sun(孙铭烁), Chun-Hui Zhang(张春辉), Rui Zhang(章睿), Xing-Yu Zhou(周星宇), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(11): 110302.
[8] Reference-frame-independent quantum key distribution with two-way classical communication
Chun Zhou(周淳), Hai-Tao Wang(汪海涛), Yi-Fei Lu(陆宜飞), Xiao-Lei Jiang(姜晓磊), Yan-Mei Zhao(赵燕美), Yu Zhou(周雨), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Yang Zhou(周砚扬), Xiang Wang(汪翔), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2024, 33(10): 100302.
[9] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
Jiang-Ping Zhou(周江平), Yuan-Yuan Zhou(周媛媛), Xue-Jun Zhou(周学军), and Xuan Bao(暴轩). Chin. Phys. B, 2023, 32(8): 080306.
[10] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[11] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[12] Security of the traditional quantum key distribution protocols with finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[13] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[14] Research progress in quantum key distribution
Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
[15] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
No Suggested Reading articles found!