Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046105    DOI: 10.1088/1674-1056/adb261
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Microstructure and microwave surface resistance of YBCO films deposited under different oxygen pressures

Zhi-Bo Sheng(盛智博)1, Fu-Cong Chen(陈赋聪)2, Pei-Yu Xiong(熊沛雨)2, Qi-Ru Yi(易栖如)1, Jie Yuan(袁洁)1,2, Yu Chen(陈雨)3, Yue-Liang Gu(顾月良)4, Kui Jin(金魁)1,2, Huan-Hua Wang(王焕华)3, Xiao-Long Li(李晓龙)4, and Chen Gao(高琛)1,†
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
4 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
Abstract  YBa2Cu3O7x (YBCO) films with low microwave surface resistance (RS) are essential for high temperature superconducting microwave devices. The oxygen pressure during deposition has been found to influence RS significantly. In this work, we deposited highly c-axis aligned YBCO films on single crystal MgO (001) substrates under different oxygen pressures via pulsed laser ablation. Their detailed microstructure was characterized with three-dimensional reciprocal space mapping (3D-RSM) method and their microwave surface resistance was also measured with resonant cavity perturbation method. We found that the variation of oxygen pressure can affect film microstructure, including grain orientation distribution and the concentration of crystal defects. The microstructure modulation can explain RS dependence on the oxygen pressure.
Keywords:  microstructure      microwave surface resistance      reciprocal space mapping      YBCO films  
Received:  05 November 2024      Revised:  23 January 2025      Accepted manuscript online:  05 February 2025
PACS:  61.05.cp (X-ray diffraction)  
  74.72.-h (Cuprate superconductors)  
  91.60.Ed (Crystal structure and defects, microstructure)  
  68.55.-a (Thin film structure and morphology)  
Fund: Project support by the National Key Research and Development Program of China (Grant No. 2022YFA1603900), the National Natural Science Foundation of China – Beijing Joint Fund (Grant No. U23A6015), Central University Basic Research Fund of China (Grant No. E1E40207X2), and the Funds from University of Chinese Academy of Sciences (Grant Nos. E1EG0210X2 and 118900M018).
Corresponding Authors:  Chen Gao     E-mail:  gaochen@ucas.edu.cn

Cite this article: 

Zhi-Bo Sheng(盛智博), Fu-Cong Chen(陈赋聪), Pei-Yu Xiong(熊沛雨), Qi-Ru Yi(易栖如), Jie Yuan(袁洁), Yu Chen(陈雨), Yue-Liang Gu(顾月良), Kui Jin(金魁), Huan-Hua Wang(王焕华), Xiao-Long Li(李晓龙), and Chen Gao(高琛) Microstructure and microwave surface resistance of YBCO films deposited under different oxygen pressures 2025 Chin. Phys. B 34 046105

[1] Sun L and He Y 2014 IEEE Trans. Appl. Superd. 24 1
[2] Simon R W, Hammond R B, Berkowitz S J and Willemsen B A 2004 Proc. IEEE 92 1585
[3] Magnuson M, Schmitt T, Strocov V N, Schlappa J, Kalabukhov A S and Duda L C 2014 Sci. Rep. 4 7017
[4] Beasley M R 1989 Proc. IEEE 77 1155
[5] Oh B, Char K, Kent A D, Naito M, Beasley M R, Geballe T H, Hammond R H, Kapitulnik A and Graybeal J M 1988 Phys. Rev. B 37 7861
[6] Petrenko E V, Omelchenko L V, Terekhov A V, Kolesnichenko Yu A, Rogacki K, Sergeyev D M and Solovjov A L 2022 Low Temp. Phys. 48 755
[7] Stangl A, Palau A, Deutscher G, Obradors X and Puig T 2021 Sci. Rep. 11 8176
[8] Liu H, Xu Y, Liu F, Wang Y and Song Y 2019 IEEE Trans. Microwave Theory Tech. 67 2720
[9] Long Z, Tian M, Zhang T, Qiao M,Wu T and Lan Y 2020 IEEE Trans. Appl. Supercond. 30 1
[10] Zhao Y, Zhu J M, Jiang G Y, Chen C S, Wu W, Zhang Z W, Chen S K, Hong Y M, Hong Z Y, Jin Z J and Yamada Y 2019 Supercond. Sci. Technol. 32 044004
[11] Jing D, Shao K, Cao C H, Zhang L X, Jiao G, Zhang Z J, Li S Q, Guo C N, Yang B C, Wang X P, Xiong G C and Lian Q J 1994 Supercond. Sci. Technol. 7 792
[12] Turner C J, Stevenson T, Cantor R, Hilliard L, Murphy T E and Bulcha B 2023 IEEE Trans. Appl. Supercond. 33 1
[13] Kalenyuk A A, Kasatkin A L, Futimsky S I, Pokusinskiy A O, Prikhna T A, Shapovalov A P, Shaternik V E and Akhmadaliev Sh 2023 Supercond. Sci. Technol. 36 035009
[14] Chen T Y, Xia Y D, Zhao R P,Wu D, Feng Z P, Yang J T, Xin J J,Wang W, Jin K and Tao B W 2022 Ceram. Int. 48 17837
[15] Rizzo F, Piperno L, Augieri A, Meledin A, Feighan J, MacManus-Driscoll J L and Celentano G 2025 Physica C 630 1354648
[16] Bektas M, Birlik I and Celik E 2025 Physica C 629 1354633
[17] Usoskin A, Betz U, Gnilsen J, Noll-Baumann S and Schlenga K 2019 Supercond. Sci. Technol. 32 094005
[18] Celentano G, Rizzo F, Augieri A, Mancini A, Pinto V, Rufoloni A, Vannozzi A, MacManus-Driscoll J L, Feighan J, Kursumovic A, Meledin A, Mayer J and Van Tendeloo G 2020 Supercond. Sci. Technol. 33 044010
[19] Vaimala T, AyeMM, Rivasto E, Zhao Y, Huhtinen H and Paturi P 2024 Physica C 624 1354565
[20] Xiong P Y, Chen F C, Feng Z P, Yang J T, Xia Y D, Yuan Y F, Wang X, Yuan J, Wu Y, Shi J and Jin K 2023 Chin. Phys. B 32 077402
[21] Zhou X H, Chen J, Liu Z Y and Cai C B 2024 Ceram. Int. 50 6517
[22] Gaudet S, De Keyser K, Lambert-Milot S, Jordan-Sweet J, Detavernier C, Lavoie C and Desjardins P 2013 J. Vac. Sci. Technol. A 31 021505
[23] Thanh T N, Blanc N, Boudet N, Bourjot E, Zhiou S, Kovacova V, Rodriguez P, Nemouchi F and Gergaud P 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM), May 18-21, 2015, Grenoble, France, p. 53
[24] Gorfman S, Spirito D, Zhang G, Detlefs C and Zhang N 2022 Acta Cryst A 78 158
[25] Sridhar S and Kennedy W L 1988 Rev. Sci. Instrum. 59 531
[26] Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H and Kwok W K 1990 Phys. Rev. B 41 1863
[27] Yi Q R, Xiong P Y, Wang H H, Li G, Wang Y K, Dong E Y, Chen Y, Shen Z B, Wu Y, Yuan J, Jin K and Gao C 2023 Acta Phys. Sin. 72 046101 (in Chinese)
[28] Terashima T, Bando Y, Iijima K, Yamamoto K, Hirata K, Hayashi K, Kamigaki K and Terauchi H 1990 Phys. Rev. Lett. 65 2684
[29] Wen C T and Tseung Y T 1997 Jpn. J. Appl. Phys. 36 76
[30] Matsuda J S, Oba F, Murata T, Yamamoto T, Ikuhara Y, Mizuno M, Nomura K, Izumi T and Shiohara Y 2004 J. Mater. Res. 19 2674
[31] Wang X, Cai Y Q, Yao X, Wan W, Li F H, Xiong J and Tao B W 2008 J. Phys. D: Appl. Phys. 41 165405
[32] Miletto G F and Scotti U U 1997 J. Alloys Compd. 251 56
[33] Camps R A, Evetts J E, Glowacki B A, Newcomb S B, Somekh R E and Stobbs W M 1987 Nature 329 229
[34] Dimos D, Chaudhari P, Mannhart J and LeGoues F K 1988 Phys. Rev. Lett. 61 219
[35] Mannhart J, Chaudhari P, Dimos D, Tsuei C C and McGuire T R 1988 Phys. Rev. Lett. 61 2476
[36] Kusunoki M, Takano Y, Mukaida M and Ohshima S 1999 Physica C 321 81
[37] Young K H and Sun J Z 1991 J. Appl. Phys. 70 3748
[38] Endo T, Yoshii K, Iwasaki S, Kohmoto H, Saratani H, Shiomi S, Matsui M and Kurosaki Y 2003 Supercond. Sci. Technol. 16 110
[39] Eom C B, Sun J Z, Yamamoto K, Marshall A F, Luther K E, Geballe T H and Laderman S S 1989 Appl. Phys. Lett. 55 595
[40] MacManus-Driscoll J L, Alonso J A,Wang P C, Geballe T H and Bravman J C 1994 Physica C 232 288
[41] Matijasevic V, Rosenthal P, Shinohara K, Marshall A F, Hammond R H and Beasley M R 1991 J. Mater. Res. 6 682
[42] Shapovalov A P, Boguslavskij Y M, Ruban A I, Gridneva G G, Melnikov V S and Pshentsova N P 1992 Supercond. Sci. Technol. 5 283
[43] Vorobiev A K, Drozdov Y N, Gusev S A, Mironov V L, Vostokov N V, Kluenkov E B, Gaponov S V and Talanov V V 1999 Supercond. Sci. Technol. 12 908
[1] Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys
Wanqiu Yu(于万秋), Yanxiang Sun(孙筵翔), Lihua Liu(刘立华), and Pingli Zhang(张平丽). Chin. Phys. B, 2025, 34(1): 016102.
[2] Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
Xing-Feng Zhang(张兴凤), Li-Bin Liu(刘立斌), Yu-Qing Li(李玉卿), Dong-Tao Zhang(张东涛), Wei-Qiang Liu(刘卫强), and Ming Yue(岳明). Chin. Phys. B, 2024, 33(9): 097503.
[3] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[4] Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation
Benjun Wang(汪本军), Wenjun Liu(刘文君), Li Liu(刘莉), Yu Wang(王玉), Yu Hang(杭宇), Xinyu Wang(王新宇), Mengen Shi(施蒙恩), Hanchen Feng(冯汉臣), Long Hou(侯龙), Chenchen Yuan(袁晨晨), Zhong Li(李忠), and Weihuo Li(李维火). Chin. Phys. B, 2024, 33(12): 126101.
[5] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[6] Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets
Xiao-Lei Gao(高晓磊), Zhuang Liu(刘壮), Guang-Qing Wang(王广庆), Chao-Qun Zhu(竺超群), Wen-Xin Cheng(程文鑫), Ming-Xiao Zhang(张明晓), Xin-Cai Liu(刘新才), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(9): 097504.
[7] Optimization of large-area YBa2Cu3O7-δ thin films by pulsed laser deposition for planar microwave devices
Pei-Yu Xiong(熊沛雨), Fu-Cong Chen(陈赋聪), Zhong-Pei Feng(冯中沛), Jing-Ting Yang(杨景婷), Yu-Dong Xia(夏钰东), Yue-Feng Yuan(袁跃峰), Xu Wang(王旭), Jie Yuan(袁洁), Yun Wu(吴云), Jing Shi(石兢), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(7): 077402.
[8] Oxidation behavior of Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2C–MxC (M = Ti, Zr, Hf, Nb, Ta) composite ceramic at high temperature
Shuai Xu(徐帅), Tao Wang(王韬), Xingang Wang(王新刚), Lu Wu(吴璐),Zhongqiang Fang(方忠强), Fangfang Ge(葛芳芳), Xuan Meng(蒙萱),Qing Liao(廖庆), Jinchun Wei(魏金春), and Bingsheng Li(李炳生). Chin. Phys. B, 2023, 32(6): 068102.
[9] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[10] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[11] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[12] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[13] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[14] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[15] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
No Suggested Reading articles found!