Microstructure and microwave surface resistance of YBCO films deposited under different oxygen pressures
Zhi-Bo Sheng(盛智博)1, Fu-Cong Chen(陈赋聪)2, Pei-Yu Xiong(熊沛雨)2, Qi-Ru Yi(易栖如)1, Jie Yuan(袁洁)1,2, Yu Chen(陈雨)3, Yue-Liang Gu(顾月良)4, Kui Jin(金魁)1,2, Huan-Hua Wang(王焕华)3, Xiao-Long Li(李晓龙)4, and Chen Gao(高琛)1,†
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 4 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
Abstract YBaCuO (YBCO) films with low microwave surface resistance () are essential for high temperature superconducting microwave devices. The oxygen pressure during deposition has been found to influence significantly. In this work, we deposited highly -axis aligned YBCO films on single crystal MgO (001) substrates under different oxygen pressures via pulsed laser ablation. Their detailed microstructure was characterized with three-dimensional reciprocal space mapping (3D-RSM) method and their microwave surface resistance was also measured with resonant cavity perturbation method. We found that the variation of oxygen pressure can affect film microstructure, including grain orientation distribution and the concentration of crystal defects. The microstructure modulation can explain dependence on the oxygen pressure.
Fund: Project support by the National Key Research and Development Program of China (Grant No. 2022YFA1603900), the National Natural Science Foundation of China – Beijing Joint Fund (Grant No. U23A6015), Central University Basic Research Fund of China (Grant No. E1E40207X2), and the Funds from University of Chinese Academy of Sciences (Grant Nos. E1EG0210X2 and 118900M018).
Zhi-Bo Sheng(盛智博), Fu-Cong Chen(陈赋聪), Pei-Yu Xiong(熊沛雨), Qi-Ru Yi(易栖如), Jie Yuan(袁洁), Yu Chen(陈雨), Yue-Liang Gu(顾月良), Kui Jin(金魁), Huan-Hua Wang(王焕华), Xiao-Long Li(李晓龙), and Chen Gao(高琛) Microstructure and microwave surface resistance of YBCO films deposited under different oxygen pressures 2025 Chin. Phys. B 34 046105
[1] Sun L and He Y 2014 IEEE Trans. Appl. Superd. 24 1 [2] Simon R W, Hammond R B, Berkowitz S J and Willemsen B A 2004 Proc. IEEE 92 1585 [3] Magnuson M, Schmitt T, Strocov V N, Schlappa J, Kalabukhov A S and Duda L C 2014 Sci. Rep. 4 7017 [4] Beasley M R 1989 Proc. IEEE 77 1155 [5] Oh B, Char K, Kent A D, Naito M, Beasley M R, Geballe T H, Hammond R H, Kapitulnik A and Graybeal J M 1988 Phys. Rev. B 37 7861 [6] Petrenko E V, Omelchenko L V, Terekhov A V, Kolesnichenko Yu A, Rogacki K, Sergeyev D M and Solovjov A L 2022 Low Temp. Phys. 48 755 [7] Stangl A, Palau A, Deutscher G, Obradors X and Puig T 2021 Sci. Rep. 11 8176 [8] Liu H, Xu Y, Liu F, Wang Y and Song Y 2019 IEEE Trans. Microwave Theory Tech. 67 2720 [9] Long Z, Tian M, Zhang T, Qiao M,Wu T and Lan Y 2020 IEEE Trans. Appl. Supercond. 30 1 [10] Zhao Y, Zhu J M, Jiang G Y, Chen C S, Wu W, Zhang Z W, Chen S K, Hong Y M, Hong Z Y, Jin Z J and Yamada Y 2019 Supercond. Sci. Technol. 32 044004 [11] Jing D, Shao K, Cao C H, Zhang L X, Jiao G, Zhang Z J, Li S Q, Guo C N, Yang B C, Wang X P, Xiong G C and Lian Q J 1994 Supercond. Sci. Technol. 7 792 [12] Turner C J, Stevenson T, Cantor R, Hilliard L, Murphy T E and Bulcha B 2023 IEEE Trans. Appl. Supercond. 33 1 [13] Kalenyuk A A, Kasatkin A L, Futimsky S I, Pokusinskiy A O, Prikhna T A, Shapovalov A P, Shaternik V E and Akhmadaliev Sh 2023 Supercond. Sci. Technol. 36 035009 [14] Chen T Y, Xia Y D, Zhao R P,Wu D, Feng Z P, Yang J T, Xin J J,Wang W, Jin K and Tao B W 2022 Ceram. Int. 48 17837 [15] Rizzo F, Piperno L, Augieri A, Meledin A, Feighan J, MacManus-Driscoll J L and Celentano G 2025 Physica C 630 1354648 [16] Bektas M, Birlik I and Celik E 2025 Physica C 629 1354633 [17] Usoskin A, Betz U, Gnilsen J, Noll-Baumann S and Schlenga K 2019 Supercond. Sci. Technol. 32 094005 [18] Celentano G, Rizzo F, Augieri A, Mancini A, Pinto V, Rufoloni A, Vannozzi A, MacManus-Driscoll J L, Feighan J, Kursumovic A, Meledin A, Mayer J and Van Tendeloo G 2020 Supercond. Sci. Technol. 33 044010 [19] Vaimala T, AyeMM, Rivasto E, Zhao Y, Huhtinen H and Paturi P 2024 Physica C 624 1354565 [20] Xiong P Y, Chen F C, Feng Z P, Yang J T, Xia Y D, Yuan Y F, Wang X, Yuan J, Wu Y, Shi J and Jin K 2023 Chin. Phys. B 32 077402 [21] Zhou X H, Chen J, Liu Z Y and Cai C B 2024 Ceram. Int. 50 6517 [22] Gaudet S, De Keyser K, Lambert-Milot S, Jordan-Sweet J, Detavernier C, Lavoie C and Desjardins P 2013 J. Vac. Sci. Technol. A 31 021505 [23] Thanh T N, Blanc N, Boudet N, Bourjot E, Zhiou S, Kovacova V, Rodriguez P, Nemouchi F and Gergaud P 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM), May 18-21, 2015, Grenoble, France, p. 53 [24] Gorfman S, Spirito D, Zhang G, Detlefs C and Zhang N 2022 Acta Cryst A 78 158 [25] Sridhar S and Kennedy W L 1988 Rev. Sci. Instrum. 59 531 [26] Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H and Kwok W K 1990 Phys. Rev. B 41 1863 [27] Yi Q R, Xiong P Y, Wang H H, Li G, Wang Y K, Dong E Y, Chen Y, Shen Z B, Wu Y, Yuan J, Jin K and Gao C 2023 Acta Phys. Sin. 72 046101 (in Chinese) [28] Terashima T, Bando Y, Iijima K, Yamamoto K, Hirata K, Hayashi K, Kamigaki K and Terauchi H 1990 Phys. Rev. Lett. 65 2684 [29] Wen C T and Tseung Y T 1997 Jpn. J. Appl. Phys. 36 76 [30] Matsuda J S, Oba F, Murata T, Yamamoto T, Ikuhara Y, Mizuno M, Nomura K, Izumi T and Shiohara Y 2004 J. Mater. Res. 19 2674 [31] Wang X, Cai Y Q, Yao X, Wan W, Li F H, Xiong J and Tao B W 2008 J. Phys. D: Appl. Phys. 41 165405 [32] Miletto G F and Scotti U U 1997 J. Alloys Compd. 251 56 [33] Camps R A, Evetts J E, Glowacki B A, Newcomb S B, Somekh R E and Stobbs W M 1987 Nature 329 229 [34] Dimos D, Chaudhari P, Mannhart J and LeGoues F K 1988 Phys. Rev. Lett. 61 219 [35] Mannhart J, Chaudhari P, Dimos D, Tsuei C C and McGuire T R 1988 Phys. Rev. Lett. 61 2476 [36] Kusunoki M, Takano Y, Mukaida M and Ohshima S 1999 Physica C 321 81 [37] Young K H and Sun J Z 1991 J. Appl. Phys. 70 3748 [38] Endo T, Yoshii K, Iwasaki S, Kohmoto H, Saratani H, Shiomi S, Matsui M and Kurosaki Y 2003 Supercond. Sci. Technol. 16 110 [39] Eom C B, Sun J Z, Yamamoto K, Marshall A F, Luther K E, Geballe T H and Laderman S S 1989 Appl. Phys. Lett. 55 595 [40] MacManus-Driscoll J L, Alonso J A,Wang P C, Geballe T H and Bravman J C 1994 Physica C 232 288 [41] Matijasevic V, Rosenthal P, Shinohara K, Marshall A F, Hammond R H and Beasley M R 1991 J. Mater. Res. 6 682 [42] Shapovalov A P, Boguslavskij Y M, Ruban A I, Gridneva G G, Melnikov V S and Pshentsova N P 1992 Supercond. Sci. Technol. 5 283 [43] Vorobiev A K, Drozdov Y N, Gusev S A, Mironov V L, Vostokov N V, Kluenkov E B, Gaponov S V and Talanov V V 1999 Supercond. Sci. Technol. 12 908
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.