Abstract Influences of swift heavy ion (SHI) irradiation induced defects on electronic properties of the bulk SnSe based FETs are explored. Latent tracks and amounts of Se vacancies in the irradiated SnSe were confirmed. Red shift of the A peak indicates that the resonance frequency of the phonons is reduced due to the defect generation in SnSe. The source-drain current increased at ion fluence of 1 ionscm, which was attributeded to the irradiation caused Se vacancies, which hence increases the concentration of conduction electrons. The carrier mobility was about 16.9 cmVs for the devices irradiated at ion fluence of 1 ionscm, which benefited from heavy ion irradiation enhanced interlayer coupling. The mechanism of device performance optimization after irradiation is discussed in detail. This work provides evidence that, given the electronic properties of two-dimensional material-based device, vacancies and interlayer coupling effects caused by SHI irradiation should not be ignored.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375261, 12175287, 12205350, and 62234013) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2022424).
Corresponding Authors:
Yan Li, Shengxia Zhang
E-mail: liyan-nwnu@163.com;zhangsx@impcas.ac.cn
Cite this article:
Shifan Gao(高诗凡), Siyuan Ma(马思远), Shengxia Zhang(张胜霞), Pengliang Zhu(朱彭靓), Jie Liu(刘杰), Lijun Xu(徐丽君), Pengfei Zhai(翟鹏飞), Peipei Hu(胡培培), and Yan Li(李燕) Non-negligible influence of vacancies and interlayer coupling on electronic properties of heavy ion irradiated SnSe2 FETs 2025 Chin. Phys. B 34 046106
[1] Soares D M, Mukherjee S and Singh G 2020 Chemistry -A European Journal 26 6320 [2] Voiry D, Yang J and Chhowalla M 2016 Adv. Mater. 28 6197 [3] Chhowalla M, Liu Z and Zhang H 2015 Chem. Soc. Rev. 44 2584 [4] Wang Q H, Kourosh K Z, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [5] Song H S, Li S L, Gao L, Xu Y, Ueno K, Tang J, Cheng Y B and Tsukagoshi K 2013 Nanoscale 5 9666 [6] Larentis S, Fallahazad B and Tutuc E 2012 Appl. Phys. Lett. 101 223104 [7] Ding Y, Xiao B, Tang G and Hong J 2017 J. Phys. Chem. C 121 225 [8] Deng T, Gao Z, Qiu P, Wei T, Xiao J, Wang G, Chen L and Shi X 2022 Adv. Sci. 9 2203436 [9] Sledzinska M, Dimoulas A, Sotomayor Torres Clivia M and Sachat El A 2021 Nano Lett. 21 9172 [10] Pan X, Zhou X, Liao X, Yu R, Yu K, Lin S, Ding Y, LuoW, Yan M and Mai L 2022 ACS Mater. Lett. 4 2622 [11] Kang Y, Pei Y, He D, Xu H, Ma M, Yan J, Jiang C, Li W and Xiao X 2024 Light: Science & Applications 13 127 [12] Kang Y, Pei Y, He D, et al De D, Manongdo J, See S, Zhang V, Guloy A and Peng H 2012 Nanotechnology. 24 25202 [13] Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A and Terrones M 2016 2D Mater. 3 022002 [14] Ochedowski O, Marinov K, Wilbs G, Keller G, Scheuschner N, Severin D, Bender M, Maultzsch J, Tegude F J and Schleberger M 2013 J. Appl. Phys. 113 214306 [15] Zhang S X, Liu J, Zeng J, Hu P P, Maaz K, Xu L J, Duan J L, Zhai P F, Li Z Z and Liu L 2019 J. Phys. D: Appl. Phys. 52 125102 [16] Ding Y, Xiao B, Tang G and Hong J 2017 J. Phys. Chem. C 121 225 [17] Deng T, Gao Z, Qiu P, Wei T, Xiao J, Wang G, Chen L and Shi X 2022 Adv. Sci. 9 2203436 [18] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Meth. Phys. Res. B 268 1818 [19] Levalois M and Marie P 1999 Nucl. Meth. Phys. Res. B 64 156 [20] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385 [21] Smith A J, Meek P E and LiangWY 1977 J. Phys. C: Solid State Phys. 10 1321 [22] Wang Y and Chhowalla M 2021 Nat. Rev. Phys. 4 101 [23] Zheng Y H, Zhao H, Li W, Chen Z, Zhu W, Liu X, Tang Q, Wang H, Wang C and Li Z 2023 Appl. Phys. Lett. 123 251602 [24] Lu H, Zang H, Lai Z, An W, Ni V, Rodionova V, Magomedov K and Ren X 2024 Appl. Phys. Lett. 124 232105 [25] Li X, Li L, Zhao H, Ruan S, Zhang W, Yan P, Sun Z, Liang H and Tao K 2019 Nanomaterials 9 1324 [26] Zhang Y, Shi Y, Wu M, Zhang K, Man B and Liu M 2018 Nanomaterials 8 515 [27] Wang Y Y, Huang P, Ye M, Quhe R, Pan Y Y, Xiao L, Pan F and Lu J 2017 Chem. Mater. 29 2191 [28] Wang Y Y, Ye M, Weng M, Li J, Zhang X, Zhang H, Guo Y, Pan Y Y, Xiao L, Liu J, Pan F and Lu J 2017 ACS Appl. Mater. Interfaces. 9 29273 [29] Liu X F, Xing K, Tang C S, Sun S, Chen P, Qi D C, Breese M B H, Fuhrer M S, Wee A T S and Yin X 2024 Prog. Mater. Sci. 117 101390 [30] Su Y, Ebrish M A, Olson E J and Koester S J 2013 Appl. Phys. Lett. 103 263104 [31] Anderson P W 1958 Phys. Rev. 109 1492 [32] Zion E, Haran A, Butenko A V, Wolfson L, Kaganovskii Yu, Havdala T, Sharoni A, Naveh D, Richter V, Kaveh M, Kogan E and Shlimak I 2015 Graphene. 4 45 [33] Zhang S X, Liu J, Zeng J, Hu P P, Maaz K, Xu L J, Duan J L, Zhai P F, Li Z Z and Liu L 2019 J. Phys. D: Appl. Phys. 52 125102 [34] Zhou X Y, Liu C, Song L T, Zhang H M, Huang Z W, He C L, Li B L, Lin X H, Zhang Z C, Shi S, Shen D Y, Song R, Li J, Liu X Q, Zou X M, Huang L, Liao L, Duan X D and Li B 2022 Science China Physics, Mechanics & Astronomy 65 276811 [35] Sharma J, Singh R, Singh H, Singh T, Singh P, Thakur A and Tripathi S K 2017 J. Alloys Compd. 724 62 [36] Li F, Chen H, Xu L, Zhang F, Yin P, Yang T, Shen T, Qi J, Zhang Y, Li D, Ge Y and Zhang H 2021 ACS Appl. Mater. Interfaces. 13 33226
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.