Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046106    DOI: 10.1088/1674-1056/adb270
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Non-negligible influence of vacancies and interlayer coupling on electronic properties of heavy ion irradiated SnSe2 FETs

Shifan Gao(高诗凡)1,2, Siyuan Ma(马思远)2, Shengxia Zhang(张胜霞)2,‡, Pengliang Zhu(朱彭靓)2, Jie Liu(刘杰)2, Lijun Xu(徐丽君)2, Pengfei Zhai(翟鹏飞)2, Peipei Hu(胡培培)2, and Yan Li(李燕)1,†
1 Northwest Normal University (NWNU), Lanzhou 730070, China;
2 Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
Abstract  Influences of swift heavy ion (SHI) irradiation induced defects on electronic properties of the bulk SnSe2 based FETs are explored. Latent tracks and amounts of Se vacancies in the irradiated SnSe2 were confirmed. Red shift of the A1g peak indicates that the resonance frequency of the phonons is reduced due to the defect generation in SnSe2. The source-drain current Ids increased at ion fluence of 1×1010 ionscm2, which was attributeded to the irradiation caused Se vacancies, which hence increases the concentration of conduction electrons. The carrier mobility was about 16.9 cm2V1s1 for the devices irradiated at ion fluence of 1×109 ionscm2, which benefited from heavy ion irradiation enhanced interlayer coupling. The mechanism of device performance optimization after irradiation is discussed in detail. This work provides evidence that, given the electronic properties of two-dimensional material-based device, vacancies and interlayer coupling effects caused by SHI irradiation should not be ignored.
Keywords:  heavy ion irradiation      electronic transport in nanoscale      materials structures      radiation damage      semiconductor devices  
Received:  02 January 2025      Revised:  01 February 2025      Accepted manuscript online:  05 February 2025
PACS:  61.80.Jh (Ion radiation effects)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  85.30.-z (Semiconductor devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375261, 12175287, 12205350, and 62234013) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2022424).
Corresponding Authors:  Yan Li, Shengxia Zhang     E-mail:  liyan-nwnu@163.com;zhangsx@impcas.ac.cn

Cite this article: 

Shifan Gao(高诗凡), Siyuan Ma(马思远), Shengxia Zhang(张胜霞), Pengliang Zhu(朱彭靓), Jie Liu(刘杰), Lijun Xu(徐丽君), Pengfei Zhai(翟鹏飞), Peipei Hu(胡培培), and Yan Li(李燕) Non-negligible influence of vacancies and interlayer coupling on electronic properties of heavy ion irradiated SnSe2 FETs 2025 Chin. Phys. B 34 046106

[1] Soares D M, Mukherjee S and Singh G 2020 Chemistry -A European Journal 26 6320
[2] Voiry D, Yang J and Chhowalla M 2016 Adv. Mater. 28 6197
[3] Chhowalla M, Liu Z and Zhang H 2015 Chem. Soc. Rev. 44 2584
[4] Wang Q H, Kourosh K Z, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[5] Song H S, Li S L, Gao L, Xu Y, Ueno K, Tang J, Cheng Y B and Tsukagoshi K 2013 Nanoscale 5 9666
[6] Larentis S, Fallahazad B and Tutuc E 2012 Appl. Phys. Lett. 101 223104
[7] Ding Y, Xiao B, Tang G and Hong J 2017 J. Phys. Chem. C 121 225
[8] Deng T, Gao Z, Qiu P, Wei T, Xiao J, Wang G, Chen L and Shi X 2022 Adv. Sci. 9 2203436
[9] Sledzinska M, Dimoulas A, Sotomayor Torres Clivia M and Sachat El A 2021 Nano Lett. 21 9172
[10] Pan X, Zhou X, Liao X, Yu R, Yu K, Lin S, Ding Y, LuoW, Yan M and Mai L 2022 ACS Mater. Lett. 4 2622
[11] Kang Y, Pei Y, He D, Xu H, Ma M, Yan J, Jiang C, Li W and Xiao X 2024 Light: Science & Applications 13 127
[12] Kang Y, Pei Y, He D, et al De D, Manongdo J, See S, Zhang V, Guloy A and Peng H 2012 Nanotechnology. 24 25202
[13] Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A and Terrones M 2016 2D Mater. 3 022002
[14] Ochedowski O, Marinov K, Wilbs G, Keller G, Scheuschner N, Severin D, Bender M, Maultzsch J, Tegude F J and Schleberger M 2013 J. Appl. Phys. 113 214306
[15] Zhang S X, Liu J, Zeng J, Hu P P, Maaz K, Xu L J, Duan J L, Zhai P F, Li Z Z and Liu L 2019 J. Phys. D: Appl. Phys. 52 125102
[16] Ding Y, Xiao B, Tang G and Hong J 2017 J. Phys. Chem. C 121 225
[17] Deng T, Gao Z, Qiu P, Wei T, Xiao J, Wang G, Chen L and Shi X 2022 Adv. Sci. 9 2203436
[18] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Meth. Phys. Res. B 268 1818
[19] Levalois M and Marie P 1999 Nucl. Meth. Phys. Res. B 64 156
[20] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
[21] Smith A J, Meek P E and LiangWY 1977 J. Phys. C: Solid State Phys. 10 1321
[22] Wang Y and Chhowalla M 2021 Nat. Rev. Phys. 4 101
[23] Zheng Y H, Zhao H, Li W, Chen Z, Zhu W, Liu X, Tang Q, Wang H, Wang C and Li Z 2023 Appl. Phys. Lett. 123 251602
[24] Lu H, Zang H, Lai Z, An W, Ni V, Rodionova V, Magomedov K and Ren X 2024 Appl. Phys. Lett. 124 232105
[25] Li X, Li L, Zhao H, Ruan S, Zhang W, Yan P, Sun Z, Liang H and Tao K 2019 Nanomaterials 9 1324
[26] Zhang Y, Shi Y, Wu M, Zhang K, Man B and Liu M 2018 Nanomaterials 8 515
[27] Wang Y Y, Huang P, Ye M, Quhe R, Pan Y Y, Xiao L, Pan F and Lu J 2017 Chem. Mater. 29 2191
[28] Wang Y Y, Ye M, Weng M, Li J, Zhang X, Zhang H, Guo Y, Pan Y Y, Xiao L, Liu J, Pan F and Lu J 2017 ACS Appl. Mater. Interfaces. 9 29273
[29] Liu X F, Xing K, Tang C S, Sun S, Chen P, Qi D C, Breese M B H, Fuhrer M S, Wee A T S and Yin X 2024 Prog. Mater. Sci. 117 101390
[30] Su Y, Ebrish M A, Olson E J and Koester S J 2013 Appl. Phys. Lett. 103 263104
[31] Anderson P W 1958 Phys. Rev. 109 1492
[32] Zion E, Haran A, Butenko A V, Wolfson L, Kaganovskii Yu, Havdala T, Sharoni A, Naveh D, Richter V, Kaveh M, Kogan E and Shlimak I 2015 Graphene. 4 45
[33] Zhang S X, Liu J, Zeng J, Hu P P, Maaz K, Xu L J, Duan J L, Zhai P F, Li Z Z and Liu L 2019 J. Phys. D: Appl. Phys. 52 125102
[34] Zhou X Y, Liu C, Song L T, Zhang H M, Huang Z W, He C L, Li B L, Lin X H, Zhang Z C, Shi S, Shen D Y, Song R, Li J, Liu X Q, Zou X M, Huang L, Liao L, Duan X D and Li B 2022 Science China Physics, Mechanics & Astronomy 65 276811
[35] Sharma J, Singh R, Singh H, Singh T, Singh P, Thakur A and Tripathi S K 2017 J. Alloys Compd. 724 62
[36] Li F, Chen H, Xu L, Zhang F, Yin P, Yang T, Shen T, Qi J, Zhang Y, Li D, Ge Y and Zhang H 2021 ACS Appl. Mater. Interfaces. 13 33226
[1] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[2] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[3] Study of leakage current degradation based on stacking faults expansion in irradiated SiC junction barrier Schottky diodes
Maojiu Luo(罗茂久), Yourun Zhang(张有润), Yucheng Wang(王煜丞), Hang Chen(陈航), Rong Zhou(周嵘), Zhi Wang(王智), Chao Lu(陆超), and Bo Zhang(张波). Chin. Phys. B, 2024, 33(10): 108401.
[4] Simulation of space heavy-ion induced primary knock-on atoms in bipolar devices
Bin Zhang(张彬), Hao Jiang(姜昊), Xiao-Dong Xu(徐晓东), Tao Ying(应涛), Zhong-Li Liu(刘中利), Wei-Qi Li(李伟奇), Jian-Qun Yang(杨剑群), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2024, 33(1): 016106.
[5] Investigation of heavy ion irradiation effects on a charge trapping memory capacitor by bm C-V measurement
Qiyu Chen(陈麒宇), Xirong Yang(杨西荣), Zongzhen Li(李宗臻), Jinshun Bi(毕津顺), Kai Xi(习凯),Zhenxing Zhang(张振兴), Pengfei Zhai(翟鹏飞), Youmei Sun(孙友梅), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(9): 096102.
[6] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[7] Proton induced radiation effect of SiC MOSFET under different bias
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Zhi-Feng Lei(雷志锋), Chao Peng(彭超), Wu-Ying Ma(马武英), Di Wang(王迪), Chang-Hao Sun(孙常皓), Feng-Qi Zhang(张凤祁), Zhan-Gang Zhang(张战刚), Ye Yang(杨业), Wei Lv(吕伟), Zhong-Ming Wang(王忠明), Xiang-Li Zhong(钟向丽), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(10): 108503.
[8] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[9] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[10] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[11] Energetics and diffusion of point defects in Au/Ag metals:A molecular dynamics study
Zhi-Yong Liu(刘志勇), Bin He(何彬), Xin Qu(瞿鑫), Li-Bo Niu(牛莉博), Ru-Song Li(李如松), Fei Wang(王飞). Chin. Phys. B, 2019, 28(8): 083401.
[12] Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses
Sheng-Xia Zhang(张胜霞), Jie Liu(刘杰), Hua Xie(谢华), Li-Jun Xu(徐丽君), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Wen-Si Ai(艾文思), Peng-Fei Zhai(翟鹏飞). Chin. Phys. B, 2019, 28(11): 116102.
[13] Black phosphorus-based field effect transistor devices for Ag ions detection
Hui-De Wang(王慧德), David K Sang, Zhi-Nan Guo(郭志男), Rui Cao(曹睿), Jin-Lai Zhao(赵劲来), Muhammad Najeeb Ullah Shah, Tao-Jian Fan(范涛健), Dian-Yuan Fan(范滇元), Han Zhang(张晗). Chin. Phys. B, 2018, 27(8): 087308.
[14] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
[15] Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor
Xiao-Long Li(李小龙), Wu Lu(陆妩), Xin Wang(王信), Xin Yu(于新), Qi Guo(郭旗), Jing Sun(孙静), Mo-Han Liu(刘默寒), Shuai Yao(姚帅), Xin-Yu Wei(魏昕宇), Cheng-Fa He(何承发). Chin. Phys. B, 2018, 27(3): 036102.
No Suggested Reading articles found!