Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 017302    DOI: 10.1088/1674-1056/ad9e9e
RAPID COMMUNICATION Prev   Next  

Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition

Yu Zhu(朱玉)1, Zheng-Guo Wang(王政国)1, Yu-Jing Ren(任宇靖)1, Peng-Hao Yuan(袁鹏浩)1, Jing-Zhi Chen(陈景芝)1, Yi Ou(欧仪)1, Li-Li Meng(孟丽丽)1, and Yan Zhang(张焱)1,2†
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  The discovery of phase changings in two-dimensional (2D) materials driven by external stimuli not only helps to understand the various intriguing phases in 2D materials but also provides directions for constructing new functional devices. Here, by combining angle-resolved photoemission spectroscopy (ARPES) and \textit{in-situ} alkali-metal deposition, we studied how alkali-metal adatoms affect the electronic structure of T$_{\rm d}$-WTe$_{2}$ on two different cleaved surfaces. We found that depending on the polarization direction of the cleaved surface, the alkali-metal deposition triggered two successive phase transitions on one surface of WTe$_{2}$, while on the other surface, no phase transition was found. We attributed the observed phase transitions to a T$_{\rm d\uparrow }$-1T$'$-T$_{\rm d\downarrow }$ structural transition driven by an alkali-metal induced sliding of WTe$_{2}$ layers. By comparing the band structure obtained in different structural phases of WTe$_{2}$, we found that the evolution of band structure across different phases is characterized by an energy scale that could be related to the degree of orbital hybridization between two adjacent WTe$_{2}$ layers. Our results demonstrate a method that manipulates the surface structure of bulk 2D materials. It also builds a direct correlation between the electronic structure and the degree of interlayer misalignment in this intriguing 2D material.
Keywords:  angle-resolved photoemission spectroscopy      transition metal dichalcogenides      phase transition  
Received:  23 November 2024      Revised:  07 December 2024      Accepted manuscript online:  13 December 2024
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  77.22.Ej (Polarization and depolarization)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403502) and the National Natural Science Foundation of China (Grant No. 11888101).
Corresponding Authors:  Yan Zhang     E-mail:  yzhang85@pku.edu.cn
About author:  2025-017302-241694.pdf

Cite this article: 

Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱) Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition 2025 Chin. Phys. B 34 017302

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Lezama I G, Arora A, Ubaldini A, Barreteau C, Giannini E, Potemski M and Morpurgo A F 2015 Nano Lett. 15 2336
[3] Ruppert C, Aslan B and Heinz T F 2014 Nano Lett. 14 6231
[4] Deng K, Wan G, Deng P, et al. 2016 Nat. Phys. 12 1105
[5] Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M T, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N and Kaminski A 2016 Nat. Mater. 15 1155
[6] Tidman J P, Singh O, Curzon A E and Frindt R F 2006 Philos. Mag. 30 1191
[7] Wang Y D, Yao W L, Xin Z M, Han T T, Wang Z G, Chen L, Cai C, Li Y and Zhang Y 2020 Nat. Commun. 11 4215
[8] He W Y, Xu X Y, Chen G, Law K T and Lee P A 2018 Phys. Rev. Lett. 121 046401
[9] Klanjsek M, Zorko A,Zitko R, Mravlje J, Jaglicic Z, Biswas Pabitra K, Prelovsek P, Mihailovic D and Arcon D2017 Nat. Phys. 13 1130
[10] Li W, Qian X and Li J 2021 Nat. Rev. Mater. 6 829
[11] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128
[12] Zhu X, Li D, Liang X and Lu W D 2018 Nat. Mater. 18 141
[13] Hou W, Azizimanesh A, Sewaket A, Pena T, Watson C, Liu M, AskariH and Wu S M 2019 Nat. Nanotechnol. 14 668
[14] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H and Yang H 2015 Science 349 625
[15] Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487
[16] Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J and Lee Y H 2015 Nat. Phys. 11 482
[17] Lee C H, Silva E C, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E and Robinson J A 2015 Sci. Rep. 5 10013
[18] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[19] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[20] Yang Q, Wu M and Li J 2018 J. Phys. Chem. Lett. 9 7160
[21] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336
[22] Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X, Zhang X and Lindenberg A M 2020 Nat. Phys. 16 1028
[23] Wang L, Gutierrez-Lezama I, Barreteau C, Ubrig N, Giannini E and Morpurgo A F 2015 Nat. Commun. 6 8892
[24] Wang C, Zhang Y, Huang J, et al. 2016 Phys. Rev. B 94 241119
[25] Bruno F Y, Tamai A, Wu Q S, Cucchi I, Barreteau C, de la Torre A, McKeown Walker S, Ricc'o S, Wang Z, Kim T K, Hoesch M, Shi M, Plumb N C, Giannini E, Soluyanov A A and Baumberger F 2016 Phys. Rev. B 94 121112
[26] Wan Y, Wang L, Kuroda K, Zhang P, Koshiishi K, Suzuki M, Kim J, Noguchi R, Bareille C, Yaji K, Harasawa A, Shin S, Cheong S W, Fujimori A and Kondo T 2022 Phys. Rev. B 105 085421
[27] Rossi A, Restta G, Lee S H, Redwing R D, Jozwiak C, Bostwick A, Rotenberg E, Savrasov S Y and Vishik I M 2020 Phys. Rev. B 102 121110
[28] Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud'ko S L, Canfield P C and Kaminski A 2016 Phys. Rev. B 94 121113
[29] Han T T, Chen L, Cai C, Wang Z G, Wang Y D, Xin Z M and Zhang Y 2021 Phys. Rev. Lett. 126 106602
[30] Wang Z G, Yao W l, Wang Y D, Xin Z M, Han T T, Chen L, Ou Y, Zhu Y, Cai C, Li Y and Zhang Y 2023 Chin. Phys. B 32 107404
[31] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[32] Kang M, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A and Kim K S 2017 Nano Lett. 17 1610
[33] Ji S, Granas O and Weissenrieder J 2021 ACS Nano 15 8826
[34] Tao Y, Schneeloch J A, Aczel A A and Louca D 2020 Phys. Rev. B 102 060103
[35] Kim H J, Kang S H, Hamada I and Son Y W 2017 Phys. Rev. B 95 180101
[36] Li L and Wu M 2017 ACS Nano 11 6382
[37] Wang X, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L and Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367
[38] Jindal A, Saha A, Li Z, Taniguchi T, Watanabe K, Hone J C, Birol T, Fernandes R M, Dean C R, Pasupathy A N and Rhodes D A 2023 Nature 613 48
[39] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 590 249
[40] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[1] Chiral phonons of honeycomb-type bilayer Wigner crystals
Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(1): 017301.
[2] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[3] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[4] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[5] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[6] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[7] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[8] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[9] Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy
Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
[10] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[11] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[12] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[13] Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity
Ping-Hui Mou(牟平辉), Qing-Quan Jiang(蒋青权), Ke-Jian He(何柯腱), and Guo-Ping Li(李国平). Chin. Phys. B, 2024, 33(6): 060401.
[14] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[15] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
No Suggested Reading articles found!