|
|
Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition |
Yu Zhu(朱玉)1, Zheng-Guo Wang(王政国)1, Yu-Jing Ren(任宇靖)1, Peng-Hao Yuan(袁鹏浩)1, Jing-Zhi Chen(陈景芝)1, Yi Ou(欧仪)1, Li-Li Meng(孟丽丽)1, and Yan Zhang(张焱)1,2† |
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; 2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract The discovery of phase changings in two-dimensional (2D) materials driven by external stimuli not only helps to understand the various intriguing phases in 2D materials but also provides directions for constructing new functional devices. Here, by combining angle-resolved photoemission spectroscopy (ARPES) and \textit{in-situ} alkali-metal deposition, we studied how alkali-metal adatoms affect the electronic structure of T$_{\rm d}$-WTe$_{2}$ on two different cleaved surfaces. We found that depending on the polarization direction of the cleaved surface, the alkali-metal deposition triggered two successive phase transitions on one surface of WTe$_{2}$, while on the other surface, no phase transition was found. We attributed the observed phase transitions to a T$_{\rm d\uparrow }$-1T$'$-T$_{\rm d\downarrow }$ structural transition driven by an alkali-metal induced sliding of WTe$_{2}$ layers. By comparing the band structure obtained in different structural phases of WTe$_{2}$, we found that the evolution of band structure across different phases is characterized by an energy scale that could be related to the degree of orbital hybridization between two adjacent WTe$_{2}$ layers. Our results demonstrate a method that manipulates the surface structure of bulk 2D materials. It also builds a direct correlation between the electronic structure and the degree of interlayer misalignment in this intriguing 2D material.
|
Received: 23 November 2024
Revised: 07 December 2024
Accepted manuscript online: 13 December 2024
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
77.22.Ej
|
(Polarization and depolarization)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403502) and the National Natural Science Foundation of China (Grant No. 11888101). |
Corresponding Authors:
Yan Zhang
E-mail: yzhang85@pku.edu.cn
|
About author: 2025-017302-241694.pdf |
Cite this article:
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱) Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition 2025 Chin. Phys. B 34 017302
|
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [2] Lezama I G, Arora A, Ubaldini A, Barreteau C, Giannini E, Potemski M and Morpurgo A F 2015 Nano Lett. 15 2336 [3] Ruppert C, Aslan B and Heinz T F 2014 Nano Lett. 14 6231 [4] Deng K, Wan G, Deng P, et al. 2016 Nat. Phys. 12 1105 [5] Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M T, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N and Kaminski A 2016 Nat. Mater. 15 1155 [6] Tidman J P, Singh O, Curzon A E and Frindt R F 2006 Philos. Mag. 30 1191 [7] Wang Y D, Yao W L, Xin Z M, Han T T, Wang Z G, Chen L, Cai C, Li Y and Zhang Y 2020 Nat. Commun. 11 4215 [8] He W Y, Xu X Y, Chen G, Law K T and Lee P A 2018 Phys. Rev. Lett. 121 046401 [9] Klanjsek M, Zorko A,Zitko R, Mravlje J, Jaglicic Z, Biswas Pabitra K, Prelovsek P, Mihailovic D and Arcon D2017 Nat. Phys. 13 1130 [10] Li W, Qian X and Li J 2021 Nat. Rev. Mater. 6 829 [11] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128 [12] Zhu X, Li D, Liang X and Lu W D 2018 Nat. Mater. 18 141 [13] Hou W, Azizimanesh A, Sewaket A, Pena T, Watson C, Liu M, AskariH and Wu S M 2019 Nat. Nanotechnol. 14 668 [14] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H and Yang H 2015 Science 349 625 [15] Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487 [16] Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J and Lee Y H 2015 Nat. Phys. 11 482 [17] Lee C H, Silva E C, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E and Robinson J A 2015 Sci. Rep. 5 10013 [18] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 [19] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 [20] Yang Q, Wu M and Li J 2018 J. Phys. Chem. Lett. 9 7160 [21] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336 [22] Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X, Zhang X and Lindenberg A M 2020 Nat. Phys. 16 1028 [23] Wang L, Gutierrez-Lezama I, Barreteau C, Ubrig N, Giannini E and Morpurgo A F 2015 Nat. Commun. 6 8892 [24] Wang C, Zhang Y, Huang J, et al. 2016 Phys. Rev. B 94 241119 [25] Bruno F Y, Tamai A, Wu Q S, Cucchi I, Barreteau C, de la Torre A, McKeown Walker S, Ricc'o S, Wang Z, Kim T K, Hoesch M, Shi M, Plumb N C, Giannini E, Soluyanov A A and Baumberger F 2016 Phys. Rev. B 94 121112 [26] Wan Y, Wang L, Kuroda K, Zhang P, Koshiishi K, Suzuki M, Kim J, Noguchi R, Bareille C, Yaji K, Harasawa A, Shin S, Cheong S W, Fujimori A and Kondo T 2022 Phys. Rev. B 105 085421 [27] Rossi A, Restta G, Lee S H, Redwing R D, Jozwiak C, Bostwick A, Rotenberg E, Savrasov S Y and Vishik I M 2020 Phys. Rev. B 102 121110 [28] Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud'ko S L, Canfield P C and Kaminski A 2016 Phys. Rev. B 94 121113 [29] Han T T, Chen L, Cai C, Wang Z G, Wang Y D, Xin Z M and Zhang Y 2021 Phys. Rev. Lett. 126 106602 [30] Wang Z G, Yao W l, Wang Y D, Xin Z M, Han T T, Chen L, Ou Y, Zhu Y, Cai C, Li Y and Zhang Y 2023 Chin. Phys. B 32 107404 [31] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723 [32] Kang M, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A and Kim K S 2017 Nano Lett. 17 1610 [33] Ji S, Granas O and Weissenrieder J 2021 ACS Nano 15 8826 [34] Tao Y, Schneeloch J A, Aczel A A and Louca D 2020 Phys. Rev. B 102 060103 [35] Kim H J, Kang S H, Hamada I and Son Y W 2017 Phys. Rev. B 95 180101 [36] Li L and Wu M 2017 ACS Nano 11 6382 [37] Wang X, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L and Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367 [38] Jindal A, Saha A, Li Z, Taniguchi T, Watanabe K, Hone J C, Birol T, Fernandes R M, Dean C R, Pasupathy A N and Rhodes D A 2023 Nature 613 48 [39] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 590 249 [40] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|