Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 017401    DOI: 10.1088/1674-1056/ad8f9f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Intermediately coupled type-II superconductivity in a La-based kagome metal La3Al

Yingpeng Yu(于英鹏)1,2, Zhaolong Liu(刘兆龙)1,3, Zhaoxu Chen(陈昭旭)1,4, Qi Li(李琦)1,3, Yulong Wang(王玉龙)1,4, Xuhui Wang(王旭辉)1,2, Chunsheng Gong(龚春生)5, Zhaotong Zhuang(庄照通)1,2, Bin-Bin Ruan(阮彬彬)1, Huifen Ren(任会芬)1,2, Peijie Sun(孙培杰)1, Jian-Gang Guo(郭建刚)1,6, and Shifeng Jin(金士锋)1†
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
5 Beijing Lattice Semiconductor Co., Ltd., Beijing 101300, China;
6 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We present a comprehensive investigation into the superconducting properties of La$_{3}$Al, a La-based metal with a kagome structure. La$_{3}$Al crystallizes in a Ni$_{3}$Sn-type crystal structure (space group $P6_{3}/mmc$), where the La atoms form a kagome lattice. Resistivity measurements reveal superconducting transition with $T_{\rm c}^{\rm onset}=6.37$ K and $T_{\rm c}^{\rm zero}=6.18$ K. In magnetic susceptibility measurements, the superconducting transition is observed at 6.16 K. The lower and upper critical fields are determined to be 22.17 mT and 6.69 T, respectively. Heat capacity measurements confirm the bulk superconductivity, showing a normalized specific heat change of ${\Delta C_{\rm e}} / (\gamma T_{\rm c})=2.16$ and an electron-phonon coupling strength of $\lambda_{\rm ep} =0.9 2$. DFT calculations reveal the intricate band structure of La$_{3}$Al. The notable specific heat jump, coupled with the electron-phonon coupling strength $\lambda_{\rm ep}$, indicates that La$_{3}$Al exhibits characteristics of an intermediately coupled type-II superconductor.
Keywords:  La$_{3}$Al      superconductivity      kagome lattice  
Received:  14 August 2024      Revised:  05 November 2024      Accepted manuscript online:  07 November 2024
PACS:  74.70.Ad (Metals; alloys and binary compounds)  
  74.25.F- (Transport properties)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52272268 and 52250308), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. XDB33010100), the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0102), and the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  Shifeng Jin     E-mail:  shifengjin@iphy.ac.cn
About author:  2025-017401-241180.pdf

Cite this article: 

Yingpeng Yu(于英鹏), Zhaolong Liu(刘兆龙), Zhaoxu Chen(陈昭旭), Qi Li(李琦), Yulong Wang(王玉龙), Xuhui Wang(王旭辉), Chunsheng Gong(龚春生), Zhaotong Zhuang(庄照通), Bin-Bin Ruan(阮彬彬), Huifen Ren(任会芬), Peijie Sun(孙培杰), Jian-Gang Guo(郭建刚), and Shifeng Jin(金士锋) Intermediately coupled type-II superconductivity in a La-based kagome metal La3Al 2025 Chin. Phys. B 34 017401

[1] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[2] Chowdhury N, Khan K I A, Bangar H, Gupta P, Yadav R S, Agarwal R, Kumar A and Muduli P K 2023 Proceedings of the National Academy of Sciences, India Section A:Physical Sciences 93 477
[3] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[4] Yan S, Huse D A and White S R 2011 Science 332 1173
[5] Balents L 2010 Nature 464 199
[6] Olariu A, Mendels P, Bert F, Duc F, Trombe J C, De Vries M A and Harrison A 2008 Phys. Rev. Lett. 100 087202
[7] Xue H, Yang Y, Gao F, Chong Y and Zhang B 2019 Nat. Mater. 18 108
[8] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L and Felser C 2018 Nat. Phys. 14 1125
[9] Ye L, Kang M, Liu J, Von Cube F, Wicker C R, Suzuki T and Checkelsky J G 2018 Nature 555 638
[10] Peng C, Jiang Y F, Sheng D N and Jiang H C 2021 Adv. Quantum Technol. 4 2000126
[11] Wang Q, Qiu X L, Pei C, Gong B C, Gao L, Zhao Y and Qi Y 2023 New J. Phys. 25 043001
[12] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D and Hu J 2023 Natl. Sci. Rev. 10 nwac199
[13] Chen H, Hu B, Ye Y, Yang H and Gao H J 2022 Chin. Phys. B 31 097405
[14] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[15] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[16] Ni S, Ma S, Zhang Y, et al. 2021 Chin. Phys. Lett. 38 057403
[17] Mielke III C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H and Guguchia Z 2022 Nature 602 245
[18] Luo H, Gao Q, Liu H, Gu Y, Wu D, Yi C, Jia J, Wu S, Luo X, Xu Y, Zhao L, Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z and Zhou X J 2022 Nat. Commun. 13 273
[19] Chen H, Yang H, Hu B, et al. 2021 Nature 599 222
[20] Cho S, Ma H, Xia W, Yang Y, Liu Z, Huang Z, Jiang Z, Lu X, Liu J, Liu Z, Li J, Wang J, Liu Y, Jia J, Guo Y, Liu J and Shen D 2021 Phys. Rev. Lett. 127 236401
[21] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[22] Chen X, Zhan X, Wang X, Deng J, Liu X B, Guo J G and Chen X 2021 Chin. Phys. Lett. 38 057402
[23] Song Y, Ying T, Chen X, Han X, Wu X, Schnyder A P, Huang Y, Guo J G and Chen X 2021 Phys. Rev. Lett. 127 237001
[24] Yang Y, Wang R, Shi M Z, Wang Z, Xiang Z and Chen X H 2021 Phys. Rev. B 104 245128
[25] Yang Y, Fan W, Zhang Q, Chen Z, Chen X, Ying T, Wu X, Yang X, Meng F, Li G and Li S 2021 Chin. Phys. Lett. 38 127102
[26] Yin Q, Tu Z, Gong C, Tian S and Lei H 2021 Chin. Phys. Lett. 38 127401
[27] Po H C, Vishwanath A and Watanabe H 2017 Nat. Commun. 8 50
[28] Chen Y Y, Lawrence J M, Thompson J D and Willis J O 1989 Phys. Rev. B 40 10766
[29] Medina A, Hayashi M, Cardoso L, et al. 1998 Phys. Rev. B 57 5900
[30] Chen Y Y, Yao Y D, Hu B C, Jang C H, Lawrence J M, Huang H and Li W H 1997 Phys. Rev. B 55 5937
[31] Li L, Yamagata R, Nishimura K and Yamaoka H 2009 Phys. Rev. B 80 134429
[32] Singh D, Yadam S, Venkateshwarlu D, Gangrade M, Samatham S S and Ganesan V 2014 Mater. Res. Express 1 046114
[33] Huang L and Lu H 2020 Phys. Rev. B 102 155140
[34] Singh D, Patidar M M, Ganesan V and Suresh K G 2020 J. Magn. Magn. Mater. 514 167184
[35] Fukuhara T, Yamagata R, Li L, Nishimura K and Maezawa K 2009 J. Phys. Soc. Jpn. 78 034723
[36] Singh D, Nag J, Yadam S, Ganesan V, Alam A and Suresh K G 2023 Appl. Phys. Lett. 123 171902
[37] Sakurai T, Marushita Y, Fujiwara H, Kadomatsu H, Oguro I and Sakurai J 1992 J. Magn. Magn. Mater. 115 250
[38] Smith T F and Luo H L 1967 J. Phys. Chem. Solids 28 569
[39] Kuwasawa Y, Sekizawa K, Usui N and Yasukochi K 1969 J. Phys. Soc. Jpn. 27 590
[40] Mamiya T, Aoi T, Iwahashi K and Masuda Y 1971 J. Phys. Soc. Jpn. 31 485
[41] Aoi T and Masuda Y 1974 J. Phys. Soc. Jpn. 37 673
[42] Aoi T and Masuda Y 1974 Low Temperature Physics-LT 13 Volume 2: Quantum Crystals and Magnetism (Boston, MA:Springer US) p. 574
[43] Momma K and Izumi F 2011 J. Appl. Cryst. 44 1272
[44] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[45] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[46] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[47] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[48] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103
[49] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Smejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer ES, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[50] Yin Q, Tu Z, Gong C, Fu Y, Yan S and Lei H 2021 Chin. Phys. Lett. 38 037403
[51] Naito M and Tanaka S 1982 J. Phys. Soc. Jpn. 51 219
[52] Naik I and Rastogi A K 2011 Pramana-J. Phys. 76 957
[53] Gurevich A 2003 Phys. Rev. B. 67 184515
[54] McMillan W L 1968 Phys. Rev. 167 331
[1] Electronic band structures of topological kagome materials
Man Li(李满), Huan Ma(马欢), Rui Lou(娄睿), and Shancai Wang(王善才). Chin. Phys. B, 2025, 34(1): 017101.
[2] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[3] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[4] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[5] Observation of parabolic electron bands on superconductor LaRu2As2
Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077401.
[6] Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm)
Xingyu Yang(杨星宇), Qingqi Zeng(曾庆祺), Miao He(何苗), Xitong Xu(许锡童), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(7): 077501.
[7] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[8] Layered kagome compound Na2Ni3S4 with topological flat band
Junyao Ye(叶君耀), Yihao Lin(林益浩), Haozhe Wang(王浩哲), Zhida Song(宋志达), Ji Feng(冯济), Weiwei Xie(谢韦伟), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057103.
[9] Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[10] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[11] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[12] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[13] Band structures of strained kagome lattices
Luting Xu(徐露婷) and Fan Yang(杨帆). Chin. Phys. B, 2024, 33(2): 027101.
[14] Pressure-induced superconductivity and phase transition in PbSe and PbTe
Yuyang Jiang(江宇阳), Cuiying Pei(裴翠颖), Qi Wang(王琦), Juefei Wu(吴珏霏), Lili Zhang(张丽丽), Chao Xiong(熊超), and Yanpeng Qi(齐彦鹏). Chin. Phys. B, 2024, 33(12): 126105.
[15] Anomalous Hall effect and electronic correlation in a spin-reoriented kagome antiferromagnet LuFe6Sn6
Meng Lyu(吕孟), Yang Liu(刘洋), Shen Zhang(张伸), Junyan Liu(刘俊艳), Jinying Yang(杨金颖), Yibo Wang(王一博), Yiting Feng(冯乙婷), Xuebin Dong(董学斌), Binbin Wang(王彬彬), Hongxiang Wei(魏红祥), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(10): 107507.
No Suggested Reading articles found!