CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Intermediately coupled type-II superconductivity in a La-based kagome metal La3Al |
Yingpeng Yu(于英鹏)1,2, Zhaolong Liu(刘兆龙)1,3, Zhaoxu Chen(陈昭旭)1,4, Qi Li(李琦)1,3, Yulong Wang(王玉龙)1,4, Xuhui Wang(王旭辉)1,2, Chunsheng Gong(龚春生)5, Zhaotong Zhuang(庄照通)1,2, Bin-Bin Ruan(阮彬彬)1, Huifen Ren(任会芬)1,2, Peijie Sun(孙培杰)1, Jian-Gang Guo(郭建刚)1,6, and Shifeng Jin(金士锋)1† |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China; 4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 5 Beijing Lattice Semiconductor Co., Ltd., Beijing 101300, China; 6 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We present a comprehensive investigation into the superconducting properties of La$_{3}$Al, a La-based metal with a kagome structure. La$_{3}$Al crystallizes in a Ni$_{3}$Sn-type crystal structure (space group $P6_{3}/mmc$), where the La atoms form a kagome lattice. Resistivity measurements reveal superconducting transition with $T_{\rm c}^{\rm onset}=6.37$ K and $T_{\rm c}^{\rm zero}=6.18$ K. In magnetic susceptibility measurements, the superconducting transition is observed at 6.16 K. The lower and upper critical fields are determined to be 22.17 mT and 6.69 T, respectively. Heat capacity measurements confirm the bulk superconductivity, showing a normalized specific heat change of ${\Delta C_{\rm e}} / (\gamma T_{\rm c})=2.16$ and an electron-phonon coupling strength of $\lambda_{\rm ep} =0.9 2$. DFT calculations reveal the intricate band structure of La$_{3}$Al. The notable specific heat jump, coupled with the electron-phonon coupling strength $\lambda_{\rm ep}$, indicates that La$_{3}$Al exhibits characteristics of an intermediately coupled type-II superconductor.
|
Received: 14 August 2024
Revised: 05 November 2024
Accepted manuscript online: 07 November 2024
|
PACS:
|
74.70.Ad
|
(Metals; alloys and binary compounds)
|
|
74.25.F-
|
(Transport properties)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52272268 and 52250308), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. XDB33010100), the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0102), and the Synergetic Extreme Condition User Facility (SECUF). |
Corresponding Authors:
Shifeng Jin
E-mail: shifengjin@iphy.ac.cn
|
About author: 2025-017401-241180.pdf |
Cite this article:
Yingpeng Yu(于英鹏), Zhaolong Liu(刘兆龙), Zhaoxu Chen(陈昭旭), Qi Li(李琦), Yulong Wang(王玉龙), Xuhui Wang(王旭辉), Chunsheng Gong(龚春生), Zhaotong Zhuang(庄照通), Bin-Bin Ruan(阮彬彬), Huifen Ren(任会芬), Peijie Sun(孙培杰), Jian-Gang Guo(郭建刚), and Shifeng Jin(金士锋) Intermediately coupled type-II superconductivity in a La-based kagome metal La3Al 2025 Chin. Phys. B 34 017401
|
[1] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [2] Chowdhury N, Khan K I A, Bangar H, Gupta P, Yadav R S, Agarwal R, Kumar A and Muduli P K 2023 Proceedings of the National Academy of Sciences, India Section A:Physical Sciences 93 477 [3] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 [4] Yan S, Huse D A and White S R 2011 Science 332 1173 [5] Balents L 2010 Nature 464 199 [6] Olariu A, Mendels P, Bert F, Duc F, Trombe J C, De Vries M A and Harrison A 2008 Phys. Rev. Lett. 100 087202 [7] Xue H, Yang Y, Gao F, Chong Y and Zhang B 2019 Nat. Mater. 18 108 [8] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L and Felser C 2018 Nat. Phys. 14 1125 [9] Ye L, Kang M, Liu J, Von Cube F, Wicker C R, Suzuki T and Checkelsky J G 2018 Nature 555 638 [10] Peng C, Jiang Y F, Sheng D N and Jiang H C 2021 Adv. Quantum Technol. 4 2000126 [11] Wang Q, Qiu X L, Pei C, Gong B C, Gao L, Zhao Y and Qi Y 2023 New J. Phys. 25 043001 [12] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D and Hu J 2023 Natl. Sci. Rev. 10 nwac199 [13] Chen H, Hu B, Ye Y, Yang H and Gao H J 2022 Chin. Phys. B 31 097405 [14] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801 [15] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [16] Ni S, Ma S, Zhang Y, et al. 2021 Chin. Phys. Lett. 38 057403 [17] Mielke III C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H and Guguchia Z 2022 Nature 602 245 [18] Luo H, Gao Q, Liu H, Gu Y, Wu D, Yi C, Jia J, Wu S, Luo X, Xu Y, Zhao L, Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z and Zhou X J 2022 Nat. Commun. 13 273 [19] Chen H, Yang H, Hu B, et al. 2021 Nature 599 222 [20] Cho S, Ma H, Xia W, Yang Y, Liu Z, Huang Z, Jiang Z, Lu X, Liu J, Liu Z, Li J, Wang J, Liu Y, Jia J, Guo Y, Liu J and Shen D 2021 Phys. Rev. Lett. 127 236401 [21] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001 [22] Chen X, Zhan X, Wang X, Deng J, Liu X B, Guo J G and Chen X 2021 Chin. Phys. Lett. 38 057402 [23] Song Y, Ying T, Chen X, Han X, Wu X, Schnyder A P, Huang Y, Guo J G and Chen X 2021 Phys. Rev. Lett. 127 237001 [24] Yang Y, Wang R, Shi M Z, Wang Z, Xiang Z and Chen X H 2021 Phys. Rev. B 104 245128 [25] Yang Y, Fan W, Zhang Q, Chen Z, Chen X, Ying T, Wu X, Yang X, Meng F, Li G and Li S 2021 Chin. Phys. Lett. 38 127102 [26] Yin Q, Tu Z, Gong C, Tian S and Lei H 2021 Chin. Phys. Lett. 38 127401 [27] Po H C, Vishwanath A and Watanabe H 2017 Nat. Commun. 8 50 [28] Chen Y Y, Lawrence J M, Thompson J D and Willis J O 1989 Phys. Rev. B 40 10766 [29] Medina A, Hayashi M, Cardoso L, et al. 1998 Phys. Rev. B 57 5900 [30] Chen Y Y, Yao Y D, Hu B C, Jang C H, Lawrence J M, Huang H and Li W H 1997 Phys. Rev. B 55 5937 [31] Li L, Yamagata R, Nishimura K and Yamaoka H 2009 Phys. Rev. B 80 134429 [32] Singh D, Yadam S, Venkateshwarlu D, Gangrade M, Samatham S S and Ganesan V 2014 Mater. Res. Express 1 046114 [33] Huang L and Lu H 2020 Phys. Rev. B 102 155140 [34] Singh D, Patidar M M, Ganesan V and Suresh K G 2020 J. Magn. Magn. Mater. 514 167184 [35] Fukuhara T, Yamagata R, Li L, Nishimura K and Maezawa K 2009 J. Phys. Soc. Jpn. 78 034723 [36] Singh D, Nag J, Yadam S, Ganesan V, Alam A and Suresh K G 2023 Appl. Phys. Lett. 123 171902 [37] Sakurai T, Marushita Y, Fujiwara H, Kadomatsu H, Oguro I and Sakurai J 1992 J. Magn. Magn. Mater. 115 250 [38] Smith T F and Luo H L 1967 J. Phys. Chem. Solids 28 569 [39] Kuwasawa Y, Sekizawa K, Usui N and Yasukochi K 1969 J. Phys. Soc. Jpn. 27 590 [40] Mamiya T, Aoi T, Iwahashi K and Masuda Y 1971 J. Phys. Soc. Jpn. 31 485 [41] Aoi T and Masuda Y 1974 J. Phys. Soc. Jpn. 37 673 [42] Aoi T and Masuda Y 1974 Low Temperature Physics-LT 13 Volume 2: Quantum Crystals and Magnetism (Boston, MA:Springer US) p. 574 [43] Momma K and Izumi F 2011 J. Appl. Cryst. 44 1272 [44] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [45] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [46] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [47] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [48] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103 [49] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Smejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer ES, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003 [50] Yin Q, Tu Z, Gong C, Fu Y, Yan S and Lei H 2021 Chin. Phys. Lett. 38 037403 [51] Naito M and Tanaka S 1982 J. Phys. Soc. Jpn. 51 219 [52] Naik I and Rastogi A K 2011 Pramana-J. Phys. 76 957 [53] Gurevich A 2003 Phys. Rev. B. 67 184515 [54] McMillan W L 1968 Phys. Rev. 167 331 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|