SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure |
Haoqi Chen(陈浩琦)1, Haowen Jiang(姜皓文)1, Xuehui Jiang(姜雪辉)1, Jialin Wang(王佳琳)1, Chengyao Zhang(张铖瑶)1, Defang Duan(段德芳)2, Jing Dong(董晶)3,†, and Yanbin Ma(马艳斌)1,‡ |
1 School of Science, Harbin University of Science and Technology, Harbin 150080, China; 2 College of Physics, Jilin University, Changchun 130012, China; 3 School of Public Health, Mudanjiang Medical University, Mudanjiang 157011, China |
|
|
Abstract Perovskites have garnered significant attention in recent years. However, the presence of La atoms at the $B$-site in $ABX_3$ structures has not yet been observed. Under high pressure, perovskites exhibit unexpected phase transitions. In this study, we report the discovery of SbLaO$_3$ under ambient pressure, with a space group of $R3m$. Mechanical property calculations indicate that it is a brittle material, and it possesses a band gap of 4.0266 eV, classifying it as an insulator. We also investigate the phase at 300 GPa, where the space group shifts to $P2_{1}/m$. Additionally, the $P2_{1}/m$ phase of LaInO$_3$ under 300 GPa is explored. Ab initio molecular dynamics calculations reveal that the melting point of SbLaO$_3$ is exceptionally high. The inclusion of Sb alters the electronic structure compared with LaInO$_3$, and the Vickers hardness ($H_{\rm v}$) is estimated to reach 20.97 GPa. This research provides insights into the phase transitions of perovskites under high pressure.
|
Received: 30 October 2024
Revised: 25 November 2024
Accepted manuscript online: 29 November 2024
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
21.60.De
|
(Ab initio methods)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904067). |
Corresponding Authors:
Jing Dong, Yanbin Ma
E-mail: dongjing@mdjmu.edu.cn;mayanbin@hrbust.edu.cn
|
Cite this article:
Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌) Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure 2025 Chin. Phys. B 34 026201
|
[1] Kanno S, Imamura Y and Hada M 2019 Phys. Rev. Mater. 3 075403 [2] Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H and Han H 2018 Science 361 eaat8235 [3] Fu Q and Draxl C 2019 Phys. Rev. Lett. 122 046101 [4] Sweers M E, Ma Q, Donahue C M, Nordlund D, Haile S M and Seitz L C 2024 Phys. Rev. Mater. 8 055801 [5] Shellaiah M and Sun K W 2020 Chemosensors 8 2227 [6] Halali V V, Sanjayan C, Suvina V, Sakar M, Balakrishna R G, et al. 2020 Inorg. Chem. Front. 7 2702 [7] Jia Z, Cheng C, Chen X, Liu L, Ding R, Ye J, Wang J, Fu L, Cheng Y and Wu Y 2023 Materials Advances 4 79 [8] Kim M, McNally G M, Kim H H, Oudah M, Gibbs A S, Manuel P, Green R J, Sutarto R, Takayama T, Yaresko A, et al. 2022 Nat. Mater. 21 627 [9] Yuan Z, Zheng P, Peng Y, Liu R, Ma X, Wang G, Yu T and Yin Z 2022 Phys. Rev. B 105 014517 [10] Zhao W, Li L, Wu Z, Wang Y, Cao Z, Ling F, Jiang S, Xiang G, Zhou X and Hua Y 2023 J. Alloys Compd. 965 171370 [11] He X, Chen Y, Xia C, Muhammad K, Syeda Z D, Guo Y, Xie S, Liu X and Li L 2024 J. Am. Ceram. Soc. 107 2371 [12] Feng Y, Chen Y, Wang L, Wang J, Chang D, Yuan Y, Wu M, Fu R, Zhang L, Wang Q, et al. 2024 Chin. Phys. Lett. 41 063201 [13] Qin S, Zhou B, Liu Z, Ye X, Zhang X, Pan Z and Long Y 2022 Chin. Phys. B 31 097503 [14] Behara S, Poonawala T and Thomas T 2021 Nato. Sc. S. Ss. Iii. C. S. 188 110191 [15] Li Q,Wang Y, PanW, YangW, Zou B, Tang J and Quan Z 2017 Angew. Chem. Int. Ed. 56 15969 [16] Ke F, Wang C, Jia C, Wolf N R, Yan J, Niu S, Devereaux T P, Karunadasa H I, Mao W L and Lin Y 2021 Nat. Commun. 12 461 [17] Wang Y, Zhang L, Ma S, Zhao Y, Tan D and Chen B 2021 Appl. Phys. Lett. 118 231903 [18] Luo J, Xia J, Yang H, Sun C, Li N, Malik H A, Shu H, Wan Z, Zhang H, Brabec C J, et al. 2020 Nano Energy 77 105063 [19] Oyelade O V, Oyewole O, Oyewole D, Adeniji S, Ichwani R, Sanni D and Soboyejo W 2020 Sci. Rep. 10 7183 [20] Zhou H, Song Z, Grice C R, Chen C, Yang X,Wang H and Yan Y 2018 The Journal of Physical Chemistry Letters 9 4714 [21] Yukhno E, Bashkirov L, Pershukevich P, Kandidatova I, Mironova- Ulmane N and Sarakovskis A 2017 J. Lumin. 182 123 [22] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [23] Blöchl P E 1994 Phys. Rev. B 50 17953 [24] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [25] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 [26] Togo A, Chaput L, Tadano T and Tanaka I 2023 J. Phys. Condens. Matter 35 353001 [27] Wei H, Yang Y, Chen S and Xiang H 2021 Nat. Commun. 12 637 [28] Laurita G, Page K, Suzuki S and Seshadri R 2015 Phys. Rev. B 92 214109 [29] Luo Y, Tian H, Li X, Chen L, Yang Y andWu D 2022 Phys. Rev. B 106 024112 [30] Li D, Liu Y, Tian F B, Wei S L, Liu Z, Duan D F, Liu B B and Cui T 2018 Front. Phys. 13 137107 [31] Whitten A E, Dittrich B, Spackman M A, Turner P and Brown T C 2004 Dalton Transactions 23-29 [32] Barrett C, Cucka P and Haefner K 1963 Acta Crystallographica 16 451 [33] Spedding F H, Daane A and Herrmann K 1956 Acta Crystallographica 9 559 [34] Mouhat F and Coudert F m c X 2014 Phys. Rev. B 90 224104 [35] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275 [36] Ma H Y, Wang J, Qin P, Liu Y, Chen L, Wang L and Zhang L 2023 J. Mater. Sci. Technol. 183 32 [37] Stepanov R S, Radina A D, Tantardini C, Kvashnin A G and Kolobov A V 2024 Phys. Chem. Chem. Phys. 26 20984 [38] Sun C Q 2009 Prog. Mater. Sci. 54 179 [39] Sun C Q 2014 Springer Ser. Chem. Phys. 108 807 [40] Bouchet J, Bottin F, Jomard G and Zérah G 2009 Phys. Rev. B 80 094102 [41] Zha C s, Liu H, Tse J S and Hemley R J 2017 Phys. Rev. Lett. 119 075302 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|