Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 026201    DOI: 10.1088/1674-1056/ad989e
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure

Haoqi Chen(陈浩琦)1, Haowen Jiang(姜皓文)1, Xuehui Jiang(姜雪辉)1, Jialin Wang(王佳琳)1, Chengyao Zhang(张铖瑶)1, Defang Duan(段德芳)2, Jing Dong(董晶)3,†, and Yanbin Ma(马艳斌)1,‡
1 School of Science, Harbin University of Science and Technology, Harbin 150080, China;
2 College of Physics, Jilin University, Changchun 130012, China;
3 School of Public Health, Mudanjiang Medical University, Mudanjiang 157011, China
Abstract  Perovskites have garnered significant attention in recent years. However, the presence of La atoms at the $B$-site in $ABX_3$ structures has not yet been observed. Under high pressure, perovskites exhibit unexpected phase transitions. In this study, we report the discovery of SbLaO$_3$ under ambient pressure, with a space group of $R3m$. Mechanical property calculations indicate that it is a brittle material, and it possesses a band gap of 4.0266 eV, classifying it as an insulator. We also investigate the phase at 300 GPa, where the space group shifts to $P2_{1}/m$. Additionally, the $P2_{1}/m$ phase of LaInO$_3$ under 300 GPa is explored. Ab initio molecular dynamics calculations reveal that the melting point of SbLaO$_3$ is exceptionally high. The inclusion of Sb alters the electronic structure compared with LaInO$_3$, and the Vickers hardness ($H_{\rm v}$) is estimated to reach 20.97 GPa. This research provides insights into the phase transitions of perovskites under high pressure.
Keywords:  high pressure      molecular dynamics      phase transition  
Received:  30 October 2024      Revised:  25 November 2024      Accepted manuscript online:  29 November 2024
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  21.60.De (Ab initio methods)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904067).
Corresponding Authors:  Jing Dong, Yanbin Ma     E-mail:  dongjing@mdjmu.edu.cn;mayanbin@hrbust.edu.cn

Cite this article: 

Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌) Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure 2025 Chin. Phys. B 34 026201

[1] Kanno S, Imamura Y and Hada M 2019 Phys. Rev. Mater. 3 075403
[2] Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H and Han H 2018 Science 361 eaat8235
[3] Fu Q and Draxl C 2019 Phys. Rev. Lett. 122 046101
[4] Sweers M E, Ma Q, Donahue C M, Nordlund D, Haile S M and Seitz L C 2024 Phys. Rev. Mater. 8 055801
[5] Shellaiah M and Sun K W 2020 Chemosensors 8 2227
[6] Halali V V, Sanjayan C, Suvina V, Sakar M, Balakrishna R G, et al. 2020 Inorg. Chem. Front. 7 2702
[7] Jia Z, Cheng C, Chen X, Liu L, Ding R, Ye J, Wang J, Fu L, Cheng Y and Wu Y 2023 Materials Advances 4 79
[8] Kim M, McNally G M, Kim H H, Oudah M, Gibbs A S, Manuel P, Green R J, Sutarto R, Takayama T, Yaresko A, et al. 2022 Nat. Mater. 21 627
[9] Yuan Z, Zheng P, Peng Y, Liu R, Ma X, Wang G, Yu T and Yin Z 2022 Phys. Rev. B 105 014517
[10] Zhao W, Li L, Wu Z, Wang Y, Cao Z, Ling F, Jiang S, Xiang G, Zhou X and Hua Y 2023 J. Alloys Compd. 965 171370
[11] He X, Chen Y, Xia C, Muhammad K, Syeda Z D, Guo Y, Xie S, Liu X and Li L 2024 J. Am. Ceram. Soc. 107 2371
[12] Feng Y, Chen Y, Wang L, Wang J, Chang D, Yuan Y, Wu M, Fu R, Zhang L, Wang Q, et al. 2024 Chin. Phys. Lett. 41 063201
[13] Qin S, Zhou B, Liu Z, Ye X, Zhang X, Pan Z and Long Y 2022 Chin. Phys. B 31 097503
[14] Behara S, Poonawala T and Thomas T 2021 Nato. Sc. S. Ss. Iii. C. S. 188 110191
[15] Li Q,Wang Y, PanW, YangW, Zou B, Tang J and Quan Z 2017 Angew. Chem. Int. Ed. 56 15969
[16] Ke F, Wang C, Jia C, Wolf N R, Yan J, Niu S, Devereaux T P, Karunadasa H I, Mao W L and Lin Y 2021 Nat. Commun. 12 461
[17] Wang Y, Zhang L, Ma S, Zhao Y, Tan D and Chen B 2021 Appl. Phys. Lett. 118 231903
[18] Luo J, Xia J, Yang H, Sun C, Li N, Malik H A, Shu H, Wan Z, Zhang H, Brabec C J, et al. 2020 Nano Energy 77 105063
[19] Oyelade O V, Oyewole O, Oyewole D, Adeniji S, Ichwani R, Sanni D and Soboyejo W 2020 Sci. Rep. 10 7183
[20] Zhou H, Song Z, Grice C R, Chen C, Yang X,Wang H and Yan Y 2018 The Journal of Physical Chemistry Letters 9 4714
[21] Yukhno E, Bashkirov L, Pershukevich P, Kandidatova I, Mironova- Ulmane N and Sarakovskis A 2017 J. Lumin. 182 123
[22] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[23] Blöchl P E 1994 Phys. Rev. B 50 17953
[24] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[25] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[26] Togo A, Chaput L, Tadano T and Tanaka I 2023 J. Phys. Condens. Matter 35 353001
[27] Wei H, Yang Y, Chen S and Xiang H 2021 Nat. Commun. 12 637
[28] Laurita G, Page K, Suzuki S and Seshadri R 2015 Phys. Rev. B 92 214109
[29] Luo Y, Tian H, Li X, Chen L, Yang Y andWu D 2022 Phys. Rev. B 106 024112
[30] Li D, Liu Y, Tian F B, Wei S L, Liu Z, Duan D F, Liu B B and Cui T 2018 Front. Phys. 13 137107
[31] Whitten A E, Dittrich B, Spackman M A, Turner P and Brown T C 2004 Dalton Transactions 23-29
[32] Barrett C, Cucka P and Haefner K 1963 Acta Crystallographica 16 451
[33] Spedding F H, Daane A and Herrmann K 1956 Acta Crystallographica 9 559
[34] Mouhat F and Coudert F m c X 2014 Phys. Rev. B 90 224104
[35] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[36] Ma H Y, Wang J, Qin P, Liu Y, Chen L, Wang L and Zhang L 2023 J. Mater. Sci. Technol. 183 32
[37] Stepanov R S, Radina A D, Tantardini C, Kvashnin A G and Kolobov A V 2024 Phys. Chem. Chem. Phys. 26 20984
[38] Sun C Q 2009 Prog. Mater. Sci. 54 179
[39] Sun C Q 2014 Springer Ser. Chem. Phys. 108 807
[40] Bouchet J, Bottin F, Jomard G and Zérah G 2009 Phys. Rev. B 80 094102
[41] Zha C s, Liu H, Tse J S and Hemley R J 2017 Phys. Rev. Lett. 119 075302
[1] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[2] Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure
Kun Chen(陈坤), Xindeng Lv(吕心邓), Simin Li(李思敏), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037403.
[3] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[4] First-principles insights into the high-pressure stability and electronic characteristics of molybdenum nitride
Tao Wang(王涛), Ming-Hong Wen(温铭洪), Xin-Xin Zhang(张新欣), Wei-Hua Wang(王伟华), Jia-Mei Liu(刘佳美), Xu-Ying Wang(王旭颖), and Pei-Fang Li(李培芳). Chin. Phys. B, 2025, 34(3): 036104.
[5] Atomic origin of minor alloying element effect on glass forming ability of metallic glass
Shan Zhang(张珊), Qingan Li(李庆安), Yong Yang(杨勇), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2025, 34(3): 036105.
[6] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[7] Understanding thermal hysteresis of ferroelectric phase transitions in BaTiO3 with combined first-principle-based approach and phase-field model
Cancan Shao(邵灿灿) and Houbing Huang(黄厚兵). Chin. Phys. B, 2025, 34(2): 027701.
[8] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[9] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[10] Pressure generation under deformation in a large-volume press
Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
[11] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[12] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[13] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[14] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[15] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
No Suggested Reading articles found!