Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 017301    DOI: 10.1088/1674-1056/ad8eca
Special Issue: TOPICAL REVIEW — Moiré physics in two-dimensional materials
SPECIAL TOPIC — Moiré physics in two-dimensional materials Prev   Next  

Chiral phonons of honeycomb-type bilayer Wigner crystals

Dingrui Yang(杨丁睿)1, Lingyi Li(李令仪)2, Na Zhang(张娜)3, and Hongyi Yu(俞弘毅)3,4,†
1 Keble College, University of Oxford, Oxford, United Kingdom;
2 Samueli School of Engineering, University of California, Irvine, CA 92697, USA;
3 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China;
4 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China
Abstract  We theoretically investigated the chiral phonons of honeycomb-type bilayer Wigner crystals recently discovered in van der Waals structures of layered transition metal dichalcogenides. These chiral phonons can emerge under the inversion symmetry breaking introduced by an effective mass imbalance between the two layers or a moiré potential in one layer, as well as under the time-reversal symmetry breaking realized by applying a magnetic field. Considering the wide tunability of layered materials, the frequencies and chirality of phonons can both be tuned by varying the system parameters. These findings suggest that bilayer honeycomb-type Wigner crystals can serve as an exciting new platform for studying chiral phonons.
Keywords:  chiral phonon      bilayer Wigner crystal      transition metal dichalcogenides      moiré      pattern  
Received:  29 September 2024      Revised:  01 November 2024      Accepted manuscript online:  05 November 2024
PACS:  73.20.Qt (Electron solids)  
  73.21.Ac (Multilayers)  
  73.21.Cd (Superlattices)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: This work was supported by Tencent’s Program of Aspiring Explorers in Science. H.Y. acknowledges support by the National Natural Science Foundation of China (Grant No. 12274477) and the Department of Science and Technology of Guangdong Province in China (Grant No. 2019QN01X061).
Corresponding Authors:  Hongyi Yu     E-mail:  yuhy33@mail.sysu.edu.cn

Cite this article: 

Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅) Chiral phonons of honeycomb-type bilayer Wigner crystals 2025 Chin. Phys. B 34 017301

[1] Wigner E 1934 Phys. Rev. 46 1002
[2] Grimes C C and Adams G 1979 Phys. Rev. Lett. 42 795
[3] Andrei E Y, Deville G, Glattli D C, et al. 1988 Phys. Rev. Lett. 60 2765
[4] Mak K F and Shan J 2022 Nat. Nanotech. 17 686
[5] Montblanch A R-P, Barbone M, Aharonovich I, et al. 2023 Nat. Nanotechnol. 18 555
[6] Smoleński T, Dolgirev P E, Kuhlenkamp C, et al. 2021 Nature 595 53
[7] Esfarjani K and Kawazoe Y 1995 J. Phys.: Condens. Matter 7 7217
[8] Goldoni G and Peeters F M 1996 Phys. Rev. B 53 4591
[9] Narasimhan S and Ho T L 1995 Phys. Rev. B 52 12291
[10] Zhou Y, Sung J, Brutschea E, et al. 2021 Nature 595 48
[11] wierkowski L, Neilson D and Szymański J 1991 Phys. Rev. Lett. 67 240
[12] Tang Y, Li L, Li T, et al. 2020 Nature 579 353
[13] Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359
[14] Wang L, Shih E M, Ghiotto A, et al. 2020 Nat. Mater. 19 861
[15] Xu Y, Liu S, Rhodes D A, et al. 2020 Nature 587 214
[16] Huang X, Wang T, Miao S, et al. 2021 Nat. Phys. 17 715
[17] Miao S, Wang T, Huang X, et al. 2021 Nat. Commun. 12 3608
[18] Liu E, Taniguchi T, Watanabe K, et al. 2021 Phys. Rev. Lett. 127 037402
[19] Li T, Jiang S, Li L, et al. 2021 Nature 597 350
[20] Li H, Li S, Regan E C, et al. 2021 Nature 597 650
[21] Li H, Li S, Naik M H, et al. 2021 Nat. Phys. 17 1114
[22] Jin C, Tao Z, Li T, et al. 2021 Nat. Mater. 20 940
[23] Bonsall L and Maradudin A A 1977 Phys. Rev. B 15 1959
[24] Fukuyama H 1975 Solid State Commun. 17 1323
[25] Falko V I 1994 Phys. Rev. B 49 7774
[26] Zhou J, Tang J and Yu H 2023 Chin. Phys. B 32 107308
[27] Yu H and Zhou J 2023 Nat. Sci. 3 e20220065
[28] Zhang L and Niu Q 2015 Phys. Rev. Lett. 115 115502
[29] Li N, Ren J, Wang L, et al. 2012 Rev. Mod. Phys. 84 1045
[30] He M, Rivera P, Tuan D V, et al. 2020 Nat. Commun. 11 618
[31] Li Z, Wang T, Jin C, et al. 2019 Nat. Commun. 10 2469
[32] Liu E, Baren J v, Taniguchi T, et al. 2019 Phys. Rev. Research 1 032007
[33] Li Z, Wang T, Jin C, et al. 2019 ACS Nano 13 14107
[34] Liu E, Baren J v, Liang C T, et al. 2020 Phys. Rev. Lett. 124 196802
[35] Zhu H, Yi J, Li M Y, et al. 2018 Science 359 579
[36] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B 88 045318
[37] Kylänpää I and Komsa H P 2015 Phys. Rev. B 92 205418
[38] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406
[39] Götting N, Lohof F and Gies C 2022 Phys. Rev. B 105 165419
[40] Danovich M, Ruiz-Tijerina D A, Hunt R J, et al. 2018 Phys. Rev. B 97 195452
[41] Hou Y and Yu H 2024 2D Mater. 11 025019
[42] Liu Y, Xu Y, Zhang S C, et al. 2017 Phys. Rev. B 96 064106
[1] Correlated physics, charge and magnetic orders in moiré kagomé systems
Zhaochen Liu(刘兆晨) and Jing Wang(王靖). Chin. Phys. B, 2025, 34(2): 027304.
[2] Orbital XY models in moiré superlattices
Yanqi Li(李彦琪), Yi-Jie Wang(王一杰), and Zhi-Da Song(宋志达). Chin. Phys. B, 2025, 34(2): 027303.
[3] Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe
Tengdong Zhang(张腾东), Rui Fan(樊睿), Yan Gao(高炎), Yanling Wu(吴艳玲), Xiaodan Xu(徐晓丹), Dao-Xin Yao(姚道新), and Jun Li(李军). Chin. Phys. B, 2025, 34(2): 027403.
[4] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[5] Valley-selective manipulation of moiré excitons through optical Stark effect
Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩). Chin. Phys. B, 2025, 34(1): 017102.
[6] Manipulating optical and electronic properties through interfacial ferroelectricity
Yulu Liu(刘钰璐), Gan Liu(刘敢), and Xiaoxiang Xi(奚啸翔). Chin. Phys. B, 2025, 34(1): 017701.
[7] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[8] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[9] Tuning the diffusion constant to optimize the readout of positional information of spatial concentration patterns
Ka Kit Kong(江嘉杰), Chunxiong Luo(罗春雄), and Feng Liu(刘峰). Chin. Phys. B, 2024, 33(8): 088703.
[10] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[11] Theory and verification of moiré fringes for x-ray three-phase grating interferometer
Yu-Zheng Shan(单雨征), Yong-Shuai Ge(葛永帅), Jun Yang(杨君), Da-Yu Guo(郭大育), Xue-Bao Cai(蔡学宝), Xiao-Ke Liu(刘晓珂), Xiao-Wen Hou(侯晓文), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2024, 33(5): 056101.
[12] Pressure-induced structural transitions and metallization in ZrSe2
Yiping Gao(高一平), Chenchen Liu(刘晨晨), Can Tian(田灿), Chengcheng Zhu(朱程程), Xiaoli Huang(黄晓丽), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(12): 126104.
[13] Spatial patterns of the Brusselator model with asymmetric Lévy diffusion
Hongwei Yin(尹洪位), Shangtao Yang(杨尚涛), Xiaoqing Wen(文小庆), Haohua Wang(王浩华), and Shufen Yang(杨淑芬). Chin. Phys. B, 2024, 33(11): 110202.
[14] Peak structure in the interlayer conductance of Moiré superlattices
Yizhou Tao(陶懿洲), Chao Liu(刘超), Mingwen Xiao(肖明文), and Henan Fang(方贺男). Chin. Phys. B, 2024, 33(10): 107301.
[15] Memristors-coupled neuron models with multiple firing patterns and homogeneous and heterogeneous multistability
Xuan Wang(王暄), Santo Banerjee, Yinghong Cao(曹颖鸿), and Jun Mou(牟俊). Chin. Phys. B, 2024, 33(10): 100501.
No Suggested Reading articles found!