Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 017301    DOI: 10.1088/1674-1056/ad8eca
SPECIAL TOPIC — Moiré physics in two-dimensional materials Prev  

Chiral phonons of honeycomb-type bilayer Wigner crystals

Dingrui Yang(杨丁睿)1, Lingyi Li(李令仪)2, Na Zhang(张娜)3, and Hongyi Yu(俞弘毅)3,4,†
1 Keble College, University of Oxford, Oxford, United Kingdom;
2 Samueli School of Engineering, University of California, Irvine, CA 92697, USA;
3 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China;
4 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China
Abstract  We theoretically investigated the chiral phonons of honeycomb-type bilayer Wigner crystals recently discovered in van der Waals structures of layered transition metal dichalcogenides. These chiral phonons can emerge under the inversion symmetry breaking introduced by an effective mass imbalance between the two layers or a moiré potential in one layer, as well as under the time-reversal symmetry breaking realized by applying a magnetic field. Considering the wide tunability of layered materials, the frequencies and chirality of phonons can both be tuned by varying the system parameters. These findings suggest that bilayer honeycomb-type Wigner crystals can serve as an exciting new platform for studying chiral phonons.
Keywords:  chiral phonon      bilayer Wigner crystal      transition metal dichalcogenides      moiré pattern  
Received:  29 September 2024      Revised:  01 November 2024      Accepted manuscript online:  05 November 2024
PACS:  73.20.Qt (Electron solids)  
  73.21.Ac (Multilayers)  
  73.21.Cd (Superlattices)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: This work was supported by Tencent’s Program of Aspiring Explorers in Science. H.Y. acknowledges support by the National Natural Science Foundation of China (Grant No. 12274477) and the Department of Science and Technology of Guangdong Province in China (Grant No. 2019QN01X061).
Corresponding Authors:  Hongyi Yu     E-mail:  yuhy33@mail.sysu.edu.cn

Cite this article: 

Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅) Chiral phonons of honeycomb-type bilayer Wigner crystals 2025 Chin. Phys. B 34 017301

[1] Wigner E 1934 Phys. Rev. 46 1002
[2] Grimes C C and Adams G 1979 Phys. Rev. Lett. 42 795
[3] Andrei E Y, Deville G, Glattli D C, et al. 1988 Phys. Rev. Lett. 60 2765
[4] Mak K F and Shan J 2022 Nat. Nanotech. 17 686
[5] Montblanch A R-P, Barbone M, Aharonovich I, et al. 2023 Nat. Nanotechnol. 18 555
[6] Smoleński T, Dolgirev P E, Kuhlenkamp C, et al. 2021 Nature 595 53
[7] Esfarjani K and Kawazoe Y 1995 J. Phys.: Condens. Matter 7 7217
[8] Goldoni G and Peeters F M 1996 Phys. Rev. B 53 4591
[9] Narasimhan S and Ho T L 1995 Phys. Rev. B 52 12291
[10] Zhou Y, Sung J, Brutschea E, et al. 2021 Nature 595 48
[11] wierkowski L, Neilson D and Szymański J 1991 Phys. Rev. Lett. 67 240
[12] Tang Y, Li L, Li T, et al. 2020 Nature 579 353
[13] Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359
[14] Wang L, Shih E M, Ghiotto A, et al. 2020 Nat. Mater. 19 861
[15] Xu Y, Liu S, Rhodes D A, et al. 2020 Nature 587 214
[16] Huang X, Wang T, Miao S, et al. 2021 Nat. Phys. 17 715
[17] Miao S, Wang T, Huang X, et al. 2021 Nat. Commun. 12 3608
[18] Liu E, Taniguchi T, Watanabe K, et al. 2021 Phys. Rev. Lett. 127 037402
[19] Li T, Jiang S, Li L, et al. 2021 Nature 597 350
[20] Li H, Li S, Regan E C, et al. 2021 Nature 597 650
[21] Li H, Li S, Naik M H, et al. 2021 Nat. Phys. 17 1114
[22] Jin C, Tao Z, Li T, et al. 2021 Nat. Mater. 20 940
[23] Bonsall L and Maradudin A A 1977 Phys. Rev. B 15 1959
[24] Fukuyama H 1975 Solid State Commun. 17 1323
[25] Falko V I 1994 Phys. Rev. B 49 7774
[26] Zhou J, Tang J and Yu H 2023 Chin. Phys. B 32 107308
[27] Yu H and Zhou J 2023 Nat. Sci. 3 e20220065
[28] Zhang L and Niu Q 2015 Phys. Rev. Lett. 115 115502
[29] Li N, Ren J, Wang L, et al. 2012 Rev. Mod. Phys. 84 1045
[30] He M, Rivera P, Tuan D V, et al. 2020 Nat. Commun. 11 618
[31] Li Z, Wang T, Jin C, et al. 2019 Nat. Commun. 10 2469
[32] Liu E, Baren J v, Taniguchi T, et al. 2019 Phys. Rev. Research 1 032007
[33] Li Z, Wang T, Jin C, et al. 2019 ACS Nano 13 14107
[34] Liu E, Baren J v, Liang C T, et al. 2020 Phys. Rev. Lett. 124 196802
[35] Zhu H, Yi J, Li M Y, et al. 2018 Science 359 579
[36] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B 88 045318
[37] Kylänpää I and Komsa H P 2015 Phys. Rev. B 92 205418
[38] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406
[39] Götting N, Lohof F and Gies C 2022 Phys. Rev. B 105 165419
[40] Danovich M, Ruiz-Tijerina D A, Hunt R J, et al. 2018 Phys. Rev. B 97 195452
[41] Hou Y and Yu H 2024 2D Mater. 11 025019
[42] Liu Y, Xu Y, Zhang S C, et al. 2017 Phys. Rev. B 96 064106
[1] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[2] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[3] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[4] Pressure-induced structural transitions and metallization in ZrSe2
Yiping Gao(高一平), Chenchen Liu(刘晨晨), Can Tian(田灿), Chengcheng Zhu(朱程程), Xiaoli Huang(黄晓丽), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(12): 126104.
[5] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[6] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[7] Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2023, 32(5): 057303.
[8] Rubidium-induced phase transitions among metallic, band-insulating, Mott-insulating phases in 1T-TaS2
Zhengguo Wang(王政国), Weiliang Yao(姚伟良), Yudi Wang(王宇迪), Ziming Xin(信子鸣), Tingting Han(韩婷婷), Lei Chen(陈磊), Yi Ou(欧仪), Yu Zhu(朱玉), Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(张焱). Chin. Phys. B, 2023, 32(10): 107404.
[9] Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion
Jiyong Zhou(周纪勇), Jianju Tang(唐剑炬), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2023, 32(10): 107308.
[10] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[13] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[14] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[15] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
No Suggested Reading articles found!