SPECIAL TOPIC — Moiré physics in two-dimensional materials |
Prev
|
|
|
Chiral phonons of honeycomb-type bilayer Wigner crystals |
Dingrui Yang(杨丁睿)1, Lingyi Li(李令仪)2, Na Zhang(张娜)3, and Hongyi Yu(俞弘毅)3,4,† |
1 Keble College, University of Oxford, Oxford, United Kingdom; 2 Samueli School of Engineering, University of California, Irvine, CA 92697, USA; 3 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China; 4 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China |
|
|
Abstract We theoretically investigated the chiral phonons of honeycomb-type bilayer Wigner crystals recently discovered in van der Waals structures of layered transition metal dichalcogenides. These chiral phonons can emerge under the inversion symmetry breaking introduced by an effective mass imbalance between the two layers or a moiré potential in one layer, as well as under the time-reversal symmetry breaking realized by applying a magnetic field. Considering the wide tunability of layered materials, the frequencies and chirality of phonons can both be tuned by varying the system parameters. These findings suggest that bilayer honeycomb-type Wigner crystals can serve as an exciting new platform for studying chiral phonons.
|
Received: 29 September 2024
Revised: 01 November 2024
Accepted manuscript online: 05 November 2024
|
PACS:
|
73.20.Qt
|
(Electron solids)
|
|
73.21.Ac
|
(Multilayers)
|
|
73.21.Cd
|
(Superlattices)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
Fund: This work was supported by Tencent’s Program of Aspiring Explorers in Science. H.Y. acknowledges support by the National Natural Science Foundation of China (Grant No. 12274477) and the Department of Science and Technology of Guangdong Province in China (Grant No. 2019QN01X061). |
Corresponding Authors:
Hongyi Yu
E-mail: yuhy33@mail.sysu.edu.cn
|
Cite this article:
Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅) Chiral phonons of honeycomb-type bilayer Wigner crystals 2025 Chin. Phys. B 34 017301
|
[1] Wigner E 1934 Phys. Rev. 46 1002 [2] Grimes C C and Adams G 1979 Phys. Rev. Lett. 42 795 [3] Andrei E Y, Deville G, Glattli D C, et al. 1988 Phys. Rev. Lett. 60 2765 [4] Mak K F and Shan J 2022 Nat. Nanotech. 17 686 [5] Montblanch A R-P, Barbone M, Aharonovich I, et al. 2023 Nat. Nanotechnol. 18 555 [6] Smoleński T, Dolgirev P E, Kuhlenkamp C, et al. 2021 Nature 595 53 [7] Esfarjani K and Kawazoe Y 1995 J. Phys.: Condens. Matter 7 7217 [8] Goldoni G and Peeters F M 1996 Phys. Rev. B 53 4591 [9] Narasimhan S and Ho T L 1995 Phys. Rev. B 52 12291 [10] Zhou Y, Sung J, Brutschea E, et al. 2021 Nature 595 48 [11] wierkowski L, Neilson D and Szymański J 1991 Phys. Rev. Lett. 67 240 [12] Tang Y, Li L, Li T, et al. 2020 Nature 579 353 [13] Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359 [14] Wang L, Shih E M, Ghiotto A, et al. 2020 Nat. Mater. 19 861 [15] Xu Y, Liu S, Rhodes D A, et al. 2020 Nature 587 214 [16] Huang X, Wang T, Miao S, et al. 2021 Nat. Phys. 17 715 [17] Miao S, Wang T, Huang X, et al. 2021 Nat. Commun. 12 3608 [18] Liu E, Taniguchi T, Watanabe K, et al. 2021 Phys. Rev. Lett. 127 037402 [19] Li T, Jiang S, Li L, et al. 2021 Nature 597 350 [20] Li H, Li S, Regan E C, et al. 2021 Nature 597 650 [21] Li H, Li S, Naik M H, et al. 2021 Nat. Phys. 17 1114 [22] Jin C, Tao Z, Li T, et al. 2021 Nat. Mater. 20 940 [23] Bonsall L and Maradudin A A 1977 Phys. Rev. B 15 1959 [24] Fukuyama H 1975 Solid State Commun. 17 1323 [25] Falko V I 1994 Phys. Rev. B 49 7774 [26] Zhou J, Tang J and Yu H 2023 Chin. Phys. B 32 107308 [27] Yu H and Zhou J 2023 Nat. Sci. 3 e20220065 [28] Zhang L and Niu Q 2015 Phys. Rev. Lett. 115 115502 [29] Li N, Ren J, Wang L, et al. 2012 Rev. Mod. Phys. 84 1045 [30] He M, Rivera P, Tuan D V, et al. 2020 Nat. Commun. 11 618 [31] Li Z, Wang T, Jin C, et al. 2019 Nat. Commun. 10 2469 [32] Liu E, Baren J v, Taniguchi T, et al. 2019 Phys. Rev. Research 1 032007 [33] Li Z, Wang T, Jin C, et al. 2019 ACS Nano 13 14107 [34] Liu E, Baren J v, Liang C T, et al. 2020 Phys. Rev. Lett. 124 196802 [35] Zhu H, Yi J, Li M Y, et al. 2018 Science 359 579 [36] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B 88 045318 [37] Kylänpää I and Komsa H P 2015 Phys. Rev. B 92 205418 [38] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406 [39] Götting N, Lohof F and Gies C 2022 Phys. Rev. B 105 165419 [40] Danovich M, Ruiz-Tijerina D A, Hunt R J, et al. 2018 Phys. Rev. B 97 195452 [41] Hou Y and Yu H 2024 2D Mater. 11 025019 [42] Liu Y, Xu Y, Zhang S C, et al. 2017 Phys. Rev. B 96 064106 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|