CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys |
Wanqiu Yu(于万秋)1†, Yanxiang Sun(孙筵翔)2, Lihua Liu(刘立华)1, and Pingli Zhang(张平丽)1 |
1 College of Physics, Jilin Normal University, Siping 136000, China; 2 Chengxi Power Supply Company, State Grid Tianjin Electric Power Company, Tianjin 300190, China |
|
|
Abstract The microstructure and magnetic properties of Fe$_{40}$Co$_{40}$Zr$_{9}$B$_{10}$Ge$_{1}$ (Mo-free) and Fe$_{40}$Co$_{40}$Zr$_{5}$Mo$_{4}$B$_{10}$Ge$_{1}$ (Mo-containing) nanocrystalline alloys, prepared using an amorphous crystallization method, were investigated. Mo addition affects the crystallization of the Fe$_{40}$Co$_{40}$Zr$_{9}$B$_{10}$Ge$_{1}$ amorphous alloy and decreases the grain size of the $\alpha $-Fe(Co) phase below 650 $^\circ$C. For the Mo-free alloy annealed at 600 $^\circ$C and the Mo-containing alloy annealed at 575 $^\circ$C, with a single $\alpha $-Fe(Co) crystallization phase and approximately similar crystallization volume fractions, the Mo-containing alloy showed smaller, more regularly shaped grains and a significantly narrower grain-size distribution than the Mo-free alloy. The Fe and Co contents in the nanograins of the two alloys also differed. For the Mo-free alloy, a higher concentration of Co distributed in the residual amorphous matrix. For the Mo-containing alloy, a higher concentration Co dissolved in the nanograins. The specific saturation magnetization and coercivity of the Mo-free alloy were 1.05- and 1.59-times higher than those of the Mo-containing alloy, respectively.
|
Received: 23 April 2024
Revised: 13 June 2024
Accepted manuscript online: 21 June 2024
|
PACS:
|
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
|
61.46.Hk
|
(Nanocrystals)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
Fund: Project supported by the Natural Science Foundation of Jilin Province, China (Grant No. YDZJ202201ZYTS319) and the Fund from Sinoma Institute of Materials Research (Guangzhou) Co., Ltd. (SIMR) for assisting with the TEM characterization. |
Corresponding Authors:
Wanqiu Yu
E-mail: yuwanqiu2004@126.com
|
About author: 2025-016102-240572.pdf |
Cite this article:
Wanqiu Yu(于万秋), Yanxiang Sun(孙筵翔), Lihua Liu(刘立华), and Pingli Zhang(张平丽) Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys 2025 Chin. Phys. B 34 016102
|
[1] Jafari S, Beitollahi A, Eftekhari Yekta B, Ohkubo T, Budinsky V, Marsilius M, Mollazadeh S, Herzer G and Hono K 2016 J. Magn. Magn. Mater. 401 1123 [2] Willard M A, Laughlin D E, Mchenry M E, Thoma D, Sickafus K, Cross J O and Harris V G 1998 J. Appl. Phys. 84 6773 [3] Yu W Q, Zeng H Q, Sun Y M, Sun Y J and Hua Z 2017 Phys. Lett. A 381 1573 [4] Yu W Q, Sun Y M and Hua Z 2011 Appl. Surf. Sci. 257 9733 [5] Yu W Q, Lu L P, Zuo B, Hua Z, Xing G L, Wang X Y and Wang D D 2019 Appl. Phys. A 125 636 [6] Yu W Q, Zeng H Q, Sun Y M and Hua Z 2017 Vacuum 137 175 [7] Yu W Q, Tian B, Wang Z Q, Liu Y D and Sun Y M 2022 Rare Met. Mater. Eng. 51 1735 [8] Yu W Q, Sun Y M, Liu Y D, Liu J, Zuo B, Liu L H, Dong L R and Hua Z 2012 Optoelectron. Adv. Mater. Rapid Commun. 6 145 [9] Lian L Y, Zhang X W, Liu Y, Li J and Wang R Q 2023 Chin. Phys. B 32 077501 [10] Hao Q Q, Wang Z, Li X H, Zhang Y and Shi R M 2021 Physica B 604 412701 [11] Zhang L, Wang Z and Xu Y C 2018 J. Non-Cryst. Solids 481 148 [12] Sun Y and Bi X 2011 J. Alloys Compd. 509 1665 [13] Blazquez J S, Franco V, Conde A and Kiss L F 2003 J. Magn. Magn. Mater. 262 170 [14] Li Y, Wang Z and Zhang W 2018 AIP Adv. 8 056115 [15] Nabiałek M, Jez B and Błoch K · 2020 Metall. Mater. Trans. A 51 4602 [16] Kucuk I, Aykol M, Uzun O, Yildirim M, Kabaer M, Duman N, Yilmaz F, Erturk K, Akdeniz M V and Mekhrabov A O 2011 J. Alloys Compd. 509 2334 [17] Alleg S, Souilah S, Younes A, Bensalem R, Sunol J J and Greneche JM 2012 J. Alloys Compd. 536 S394 [18] Li X H, Wang Z and Duan H J 2019 J. Non-Cryst. Solids 517 114 [19] Lashgari H R, Chu D, Xie S, Sun H, Ferry M and Li S 2014 J. NonCryst. Solids 391 61 [20] Akase Z, Kimura K, Saito T, Niitsu K, Tanigaki T, Iwasaki Y, Sharma P, Makino A and Shindo D 2022 J. Magn. Magn. Mater. 541 168519 [21] Xu J, Liu X, Wang G, Luo T, Wang J, Lu K and Yang Y 2021 J. Alloys Compd. 859 157850 [22] Hono K, Ping D H, Ohnuma M and Onodera H 1999 Acta Mater. 47 997 [23] Ohkubo T, Kai H, Ping D H, Hono K and Hirotsu Y 2001 Scr. Mater. 44 971 [24] Jha R, Diercks D R, Chakraborti N, Stebner A P and Ciobanu C V 2019 Scr. Mater. 162 331 [25] Ping D H, Wu Y Q, Hono K, Willard M A, Mchenry M E and Laughlin D E 2001 Scr. Mater. 45 781 [26] Sun Y M, Wang Z Q, Xu S C and Hua Z 2021 Chin. Phys. B 30 038103 [27] Lyasotsky I V, Dyakonova N B and Dyakonov D L 2014 J. Alloys Compd. 586 S20 [28] Dyakonova N B, Dyakonov D L and Lyasotskyi I V 2014 J. Alloys Compd. 586 S41 [29] Pradeep K G, Herzer G, Choi P and Raabe D 2014 Acta Mater. 68 295 [30] Bitoh T, Makino A, Inoue A and Masumoto T 2003 Mater. Trans. 44 2011 [31] Prabhu D, Veerababu R, Balamuralikrishnan R, Narayanasamy A and Chattopadhyay K 2012 Mater. Sci. Eng. B 177 791 [32] Xue L, Yang W M, Liu H S, Men H, Wang A D, Chang C T and Shen B L 2016 J. Magn. Magn. Mater. 419 198 [33] Miao B, Luo Q, Chang C, Liu T, Zhang Y and Shen J 2019 J. Magn. Magn. Mater. 477 156 [34] Roy R K, Panda A K and Mitra A 2016 J. Magn. Magn. Mater. 418 236 [35] Hou L, Fan X, Wang Q, Yang W and Shen B 2019 J. Mater. Sci. Technol. 35 1655 [36] Hawelek L, Polak M, Wlodarczyk P, Zackiewicz P, Radon A, Lukowiec D, Hreczka M and Kolano-Burian A 2020 J. Magn. Magn. Mater. 512 166681 [37] Kunca B, Marcin J, Svec P sr andSkorvanek I 2024 J. Magn. Magn. Mater. 591 171679 [38] Takeuchi A and Inoue A 2005 Mater. Trans. 46 2817 [39] Slater J C 1937 J. Appl. Phys. 8 385 [40] Pauling L 1938 Phys. Rev. 54 899 [41] Muller M, Grahl H, Mattern N, Ktihn U and Schnell B 1996 J. Magn. Magn. Mater. 160 284 [42] Blazquez J S, Franco V and Conde A 2002 J. Phys.:Condens. Matter 14 11717 [43] Herzer G 1989 IEEE Trans. Magn. 25 3327 [44] Herzer G 2013 Acta Mater. 61 718 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|