SPECIAL TOPIC — Quantum communication and quantum network |
Prev
|
|
|
Established conversions for hybrid entangled states assisted by error-predicted parity-discriminated devices |
Fang-Fang Du(杜芳芳)†, Zhi-Guo Fan(范志国), Xue-Mei Ren(任雪梅), Ming Ma(马明), and Wen-Yao Liu(刘文耀)‡ |
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China |
|
|
Abstract Hybrid entangled states are crucial in quantum physics, offering significant benefits for hybrid quantum communication and quantum computation, and then the conversion of hybrid entangled states is equally critical. This paper presents two novel schemes, that is, one converts the two-qubit hybrid Knill-Laflamme-Milburn (KLM) entangled state into Bell states and the other one transforms the three-qubit hybrid KLM state into Greenberger-Horne-Zeilinger (GHZ) states assisted by error-predicted and parity-discriminated devices. Importantly, the integration of single photon detectors into the parity-discriminated device enhances predictive capabilities, mitigates potential failures, and facilitates seamless interaction between the nitrogen-vacancy center and photons, so the two protocols operate in an error-predicted way, improving the experimental feasibility. Additionally, our schemes demonstrate robust fidelities (close to 1) and efficiencies, indicating their feasibility with existing technology.
|
Received: 01 September 2024
Revised: 27 October 2024
Accepted manuscript online: 07 November 2024
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: This work was supported by the National Key R&D Program of China (Grant No. 2022YFB3203400), the National Natural Science Foundation of China (Grant No. 61901420), and Fundamental Research Program of Shanxi Province (Grant No. 20230302121116). |
Corresponding Authors:
Fang-Fang Du, Wen-Yao Liu
E-mail: Duff@nuc.edu.cn;liuwenyao@nuc.edu.cn
|
Cite this article:
Fang-Fang Du(杜芳芳), Zhi-Guo Fan(范志国), Xue-Mei Ren(任雪梅), Ming Ma(马明), and Wen-Yao Liu(刘文耀) Established conversions for hybrid entangled states assisted by error-predicted parity-discriminated devices 2025 Chin. Phys. B 34 010303
|
[1] Wehner S, Elkouss D and Hanson R 2018 Science 362 eaam9288 [2] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153 [3] Xu L, Wang L X, Chen G J, Chen L, Yang Y H, Xu X B, Liu A P, Li C F, Guo G C and Zou C L 2023 Chin. Phys. Lett. 40 9 [4] Li T, Gao Z K and Li Z H 2020 Europhys. Lett. 131 60001 [5] Li T and Long G L 2020 New J. Phys. 22 063017 [6] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317 [7] Su S L, Wang C, Song P Y and Chen G 2024 Chin. Phys. Lett. 41 4 [8] Cirac J I, Ekert A K, Huelga S F and Macchiavello C 1999 Phys. Rev. A 59 4249 [9] Lim Y L, Beige A and Kwek L C 2005 Phys. Rev. Lett. 95 030505 [10] Qin W, Wang X, Miranowicz A, Zhong Z and Nori F 2017 Phys. Rev. A 96 012315 [11] Cohen I and Mølmer K 2018 Phys. Rev. A 98 030302 [12] Luo G F, Zhou R G and Hu W W 2019 Chin. Phys. B 28 040302 [13] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301 [14] Ekert A K 1991 Phys. Rev. Lett. 67 661 [15] Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7 [16] Li J J, Wang Y, Li H W and Bao W S 2020 Chin. Phys. B 29 030303 [17] Zhao Y B, Zhang W L, Wang D, Song X T, Zhou L J and Ding C B 2019 Chin. Phys. B 28 104203 [18] Wang Z Q and Wang T J 2023 Phys. Rev. A 108 012434 [19] Gangopadhyay S, Wang T, Mashatan A and Ghose S 2022 Phys. Rev. A 106 052433 [20] Wang T J, Yang G Q and Wang C 2020 Phys. Rev. A 101 012323 [21] Hong Y P, Zhou L, Zhong W and Sheng Y B 2023 Quantum Inf. Process. 22 111 [22] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501 [23] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519 [24] Zhao P, Zhong W, Du M M, Li X Y, Zhou L and Sheng Y B 2024 Front. Phys. 19 51201 [25] Sun Z Z, Pan D, Ruan D and Long G L 2023 J. Lightwave Technol. 41 4680 [26] Li X J, Pan D, Long G L and Hanzo L 2023 IEEE Commun. Lett. 27 1060 [27] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [28] Zhou L, Xu B W, Zhong W and Sheng Y B 2023 Phys. Rev. Appl. 19 014036 [29] Qian P and Liu D 2023 Chin. Phys. Lett. 40 10 [30] Li C, Zhou L, Zhong W and Sheng Y B 2022 Quantum Inf. Process. 21 178 [31] Qi Z T, Li Y H, Huang Y W, Feng J, Zheng Y L and Chen X F 2021 Light Sci. Appl. 10 183 [32] Long G L and Zhang H R 2021 Sci. Bull. 66 1267 [33] Pan D, Song X T and Long G L 2023 Adv. Devices Instrum. 4 0004 [34] Zheng S B 2001 Phys. Rev. Lett. 87 230404 [35] Walther P, Resch K J and Zeilinger A 2005 Phys. Rev. Lett. 94 240501 [36] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46 [37] Agrawal P and Pati A 2006 Phys. Rev. A 74 062320 [38] Shen C P, Gu X F, Guo Q, Zhu X Y, Su S L and Liang E 2018 J. Opt. Soc. Am. B 35 694 [39] Du F F and Shi Z R 2019 Opt. Express 27 17493 [40] Ou Z Y and Mandel L 1988 Phys. Rev. Lett. 61 50 [41] Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86 4435 [42] Zheng R H, Kang Y H, Shi Z C and Xia Y 2019 Ann. Phys. 531 1800447 [43] Dur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 [44] Bugu S, Yesilyurt C and Ozaydin F 2013 Phys. Rev. A 87 032331 [45] Du F F, Fan G, Ren X M and Ma M 2023 Adv. Quantum Technol. 6 2300201 [46] Du F F, Ren X M, Fan Z G, Li L H, Du X S, Ma M, Fan G and Guo J 2024 Opt. Express 32 1686 [47] Acín A, Bruß D, Lewenstein M and Sanpera A 2001 Phys. Rev. Lett. 87 040401 [48] Du F F, Ma M and Tan Q L 2024 Adv. Quantum Technol. 2400322 [49] Shen C P, Gao Y, Su S L, Mao Y, Liang E and Chen S 2018 Ann. Phys. 530 1800114 [50] Song J, Sun X D, Mu Q X, Zhang L L, Xia Y and Song H S 2013 Phys. Rev. A 88 024305 [51] Tashima T, Wakatsuki T, Özdemir Ş K, Yamamoto T, Koashi M and Imoto N 2009 Phys. Rev. Lett. 102 130502 [52] Shen C P, Xiu X M, Dong L, Zhu X Y, Chen L, Liang E, Yan L L and Su S L 2019 Ann. Phys. 531 1900160 [53] Chen L, Xiu X M, Dong L, Zhang S, Su S L, Chen S and Liang E J 2021 Ann. Phys. 534 2100365 [54] Du F F, Ren X M, Ma M and Fan G 2023 Appl. Phys. Express 16 102006 [55] Gaebel T, Domhan M, Popa I, et al. 2006 Nat. Phys. 2 408 [56] Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J and Awschalom D D 2009 Science 326 1520 [57] Englund D, Shields B, Rivoire K, Hatami F, Vuckovic J, Park H and Lukin M D 2010 Nano Lett. 10 3922 [58] Zhang J F and Suter D 2015 Phys. Rev. Lett. 115 110502 [59] Robledo L, Childress L, Bernien H, Hensen B, Alkemade P F A and Hanson R 2011 Nature 477 574 [60] Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312 [61] Shi F Z, Rong X, Xu N Y, et al. 2010 Phys. Rev. Lett. 105 040504 [62] Du F F, Liu Y T, Shi Z R, Liang Y X, Tang J and Liu J 2019 Opt. Express 27 27046 [63] Sar T, Wang Z H, Blok M S, et al. 2012 Nature 484 82 [64] Arroyo-Camejo S, Lazariev A, Hell S W and Balasubramanian G 2014 Nat. Commun. 5 4870 [65] Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F and Duan L M 2014 Nature 514 72 [66] Togan E, Chu Y, Trifonov A S, et al. 2010 Nature 466 730 [67] Du F F and Ren X M 2025 Opt. Laser Technol. 114 053603 [68] Kosaka H and Niikura N 2015 Phys. Rev. Lett. 180 111440 [69] Ren X M and Du F F 2024 Adv. Quantum Technol. 2400208 [70] Du F F, Fan G and Ren X M 2024 Quantum 8 1342 [71] Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminiau T H, Markham M, Twitchen D J, Childress L and Hanson R 2013 Nature 497 86 [72] Wu Y M, Fan G and Du F F 2022 Front. Phys. 17 51502 [73] Du F F, Ren X M and Guo J 2024 Opt. Express 32 31633 [74] Wei H R and Long G L 2015 Phys. Rev. A 91 032324 [75] Ren B C and Deng F G 2013 Laser Phys. Lett. 10 115201 [76] Du F F, Wu Y M and Fan G 2023 Adv. Quantum Technol. 6 2300090 [77] Wang T J and Wang C 2014 Phys. Rev. A 90 052310 [78] Du F F, Ren X M, Ma M and Fan G 2024 Opt. Lett. 49 1229 [79] Wang C, Zhang Y, Jiao R Z and Jin G S 2013 Opt. Express 21 19252 [80] Jiang L, Taylor J M, Sørensen A S and Lukin M D 2007 Phys. Rev. A 76 062323 [81] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379 [82] Nemoto K, Trupke M, Devitt S J, Stephens A M, Scharfenberger B, Buczak K, Nöbauer T, Everitt M S, Schmiedmayer J and Munro W J 2014 Phys. Rev. X 4 031022 [83] Doherty M W, Dolde F, Fedder H, Jelezko F, Wrachtrup J, Manson N B and Hollenberg L C L 2012 Phys. Rev. B 85 205203 [84] Du F F, Ren X M and Tan Q L 2024 Adv. Quantum Technol. 2400313 [85] Astner T, Nevlacsil S, Peterschofsky N, Angerer A, Rotter S, Putz S, Schmiedmayer J and Majer J 2017 Phys. Rev. Lett. 118 140502 [86] Kalhor F, Yang L P, Bauer L and Jacob Z 2021 Phys. Rev. Res. 3 043007 [87] Hu C Y, Young A, O’Brien J L, Munro W J and Rarity J G 2008 Phys. Rev. B 78 085307 [88] An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303 [89] Lodahl P, Mahmoodian S and Stobbe S 2015 Rev. Mod. Phys. 87 347 [90] Hadfield R 2009 Nat. Photonics 3 696 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|