|
|
Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states |
Jian-Dong Zhang(张建东)1,†, Chuang Li(李闯)2, Lili Hou(侯丽丽)1, and Shuai Wang(王帅)1 |
1 School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China; 2 Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China |
|
|
Abstract Quantum phase estimation based on Gaussian states plays a crucial role in many application fields. In this paper, we study the precision bound for the scheme using two-mode squeezed Gaussian states. The quantum Fisher information is calculated and its maximization is used to determine the optimal parameters. We find that two single-mode squeezed vacuum states are the optimal Gaussian inputs for a fixed two-mode squeezing process. The corresponding precision bound is sub-Heisenberg-limited and scales as $N^{-1}$/2. For practical purposes, we consider the effects originating from photon loss. The precision bound can still outperform the shot-noise limit when the lossy rate is below 0.4. Our work may demonstrate a significant and promising step towards practical quantum metrology.
|
Received: 02 September 2024
Revised: 22 October 2024
Accepted manuscript online: 01 November 2024
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104193) and the Program of Zhongwu Young Innovative Talents of Jiangsu University of Technology (Grant No. 20230013). |
Corresponding Authors:
Jian-Dong Zhang
E-mail: zhangjiandong@jsut.edu.cn
|
Cite this article:
Jian-Dong Zhang(张建东), Chuang Li(李闯), Lili Hou(侯丽丽), and Shuai Wang(王帅) Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states 2025 Chin. Phys. B 34 010304
|
[1] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [2] Liu J, Yuan H, Lu X M and Wang X 2019 J. Phys. A: Math. Theor. 53 023001 [3] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602 [4] Nielsen J A H, Neergaard-Nielsen J S, Gehring T and Andersen U L 2023 Phys. Rev. Lett. 130 123603 [5] Qin J, Deng Y H, Zhong H S, Peng L C, Su H, Luo Y H, Xu J M, Wu D, Gong S Q, Liu H L,Wang H, Chen M C, Li L, Liu N L, Lu C Y and Pan J W 2023 Phys. Rev. Lett. 130 070801 [6] Guo Y F, Zhong W, Zhou L and Sheng Y B 2022 Phys. Rev. A 105 032609 [7] Dowling J P 2008 Contemp. Phys. 49 125 [8] Israel Y, Rosen S and Silberberg Y 2014 Phys. Rev. Lett. 112 103604 [9] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601 [10] Lee S Y, Ihn Y S and Kim Z 2020 Phys. Rev. A 101 012332 [11] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601 [12] Zhang J D and Wang S 2023 Phys. Rev. A 107 043704 [13] Liu J, Shao T, Li C, Zhang M, Hu Y, Chen D and Wei D 2024 Chin. Phys. B 33 014203 [14] PlickWN, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014 [15] Chekhova M V and Ou Z Y 2016 Adv. Opt. Photon. 8 104 [16] Ou Z Y and Li X 2020 APL Photon. 5 080902 [17] You C, Adhikari S, Ma X, Sasaki M, Takeoka M and Dowling J P 2019 Phys. Rev. A 99 042122 [18] Xu Y, Chang S, Liu C, Hu L and Liu S 2022 Opt. Express 30 38178 [19] Chang S, Ye W, Zhang H, Hu L, Huang J and Liu S 2022 Phys. Rev. A 105 033704 [20] Xu Y, Zhao T, Kang Q, Liu C, Hu L and Liu S 2023 Opt. Express 31 8414 [21] Liu J, Shao T, Wang Y, Zhang M, Hu Y, Chen D and Wei D 2023 Opt. Express 31 27735 [22] Liu M, Zhang L and Miao H 2023 New J. Phys. 25 103051 [23] Wang S, Zhang J and Xu X 2022 Opt. Commun. 505 127592 [24] Wong W C and Li J 2023 New J. Phys. 25 033018 [25] Zuo X, Yan Z, Feng Y, Ma J, Jia X, Xie C and Peng K 2020 Phys. Rev. Lett. 124 173602 [26] Du W, Kong J, Bao G, Yang P, Jia J, Ming S, Yuan C H, Chen J F, Ou Z Y, Mitchell M W and Zhang W 2022 Phys. Rev. Lett. 128 033601 [27] Kong J, Ou Z Y and Zhang W 2013 Phys. Rev. A 87 023825 [28] Zhang J D, Jin C F, Zhang Z J, Cen L Z, Hu J Y and Zhao Y 2018 Opt. Express 26 33080 [29] Zhang J D, You C, Li C and Wang S 2021 Phys. Rev. A 103 032617 [30] Lang M D and Caves C M 2013 Phys. Rev. Lett. 111 173601 [31] Zhang J D, You C and Wang S 2022 Opt. Express 30 43143 [32] Sparaciari C, Olivares S and Paris M G A 2015 J. Opt. Soc. Am. B 32 1354 [33] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 [34] Monras A and Paris M G A 2007 Phys. Rev. Lett. 98 160401 [35] Li D, Gard B T, Gao Y, Yuan C H, Zhang W, Lee H and Dowling J P 2016 Phys. Rev. A 94 063840 [36] Gao Y and Lee H 2014 Eur. Phys. J. D 68 347 [37] Agafonov I N, Chekhova M V and Leuchs G 2010 Phys. Rev. A 82 011801 [38] Zhang J D and Wang S 2023 Chin. Phys. B 32 010306 [39] Sparaciari C, Olivares S and Paris M G A 2016 Phys. Rev. A 93 023810 [40] Ono T and Hofmann H F 2010 Phys. Rev. A 81 033819 [41] Gard B T, You C, Mishra D K, Singh R, Lee H, Corbitt T R and Dowling J P 2017 EPJ Quantum Technol. 4 4 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|