Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 010304    DOI: 10.1088/1674-1056/ad8dc0
GENERAL Prev   Next  

Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states

Jian-Dong Zhang(张建东)1,†, Chuang Li(李闯)2, Lili Hou(侯丽丽)1, and Shuai Wang(王帅)1
1 School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China;
2 Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
Abstract  Quantum phase estimation based on Gaussian states plays a crucial role in many application fields. In this paper, we study the precision bound for the scheme using two-mode squeezed Gaussian states. The quantum Fisher information is calculated and its maximization is used to determine the optimal parameters. We find that two single-mode squeezed vacuum states are the optimal Gaussian inputs for a fixed two-mode squeezing process. The corresponding precision bound is sub-Heisenberg-limited and scales as $N^{-1}$/2. For practical purposes, we consider the effects originating from photon loss. The precision bound can still outperform the shot-noise limit when the lossy rate is below 0.4. Our work may demonstrate a significant and promising step towards practical quantum metrology.
Keywords:  quantum metrology      Gaussian state      Heisenberg limit  
Received:  02 September 2024      Revised:  22 October 2024      Accepted manuscript online:  01 November 2024
PACS:  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104193) and the Program of Zhongwu Young Innovative Talents of Jiangsu University of Technology (Grant No. 20230013).
Corresponding Authors:  Jian-Dong Zhang     E-mail:  zhangjiandong@jsut.edu.cn

Cite this article: 

Jian-Dong Zhang(张建东), Chuang Li(李闯), Lili Hou(侯丽丽), and Shuai Wang(王帅) Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states 2025 Chin. Phys. B 34 010304

[1] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[2] Liu J, Yuan H, Lu X M and Wang X 2019 J. Phys. A: Math. Theor. 53 023001
[3] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[4] Nielsen J A H, Neergaard-Nielsen J S, Gehring T and Andersen U L 2023 Phys. Rev. Lett. 130 123603
[5] Qin J, Deng Y H, Zhong H S, Peng L C, Su H, Luo Y H, Xu J M, Wu D, Gong S Q, Liu H L,Wang H, Chen M C, Li L, Liu N L, Lu C Y and Pan J W 2023 Phys. Rev. Lett. 130 070801
[6] Guo Y F, Zhong W, Zhou L and Sheng Y B 2022 Phys. Rev. A 105 032609
[7] Dowling J P 2008 Contemp. Phys. 49 125
[8] Israel Y, Rosen S and Silberberg Y 2014 Phys. Rev. Lett. 112 103604
[9] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601
[10] Lee S Y, Ihn Y S and Kim Z 2020 Phys. Rev. A 101 012332
[11] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601
[12] Zhang J D and Wang S 2023 Phys. Rev. A 107 043704
[13] Liu J, Shao T, Li C, Zhang M, Hu Y, Chen D and Wei D 2024 Chin. Phys. B 33 014203
[14] PlickWN, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014
[15] Chekhova M V and Ou Z Y 2016 Adv. Opt. Photon. 8 104
[16] Ou Z Y and Li X 2020 APL Photon. 5 080902
[17] You C, Adhikari S, Ma X, Sasaki M, Takeoka M and Dowling J P 2019 Phys. Rev. A 99 042122
[18] Xu Y, Chang S, Liu C, Hu L and Liu S 2022 Opt. Express 30 38178
[19] Chang S, Ye W, Zhang H, Hu L, Huang J and Liu S 2022 Phys. Rev. A 105 033704
[20] Xu Y, Zhao T, Kang Q, Liu C, Hu L and Liu S 2023 Opt. Express 31 8414
[21] Liu J, Shao T, Wang Y, Zhang M, Hu Y, Chen D and Wei D 2023 Opt. Express 31 27735
[22] Liu M, Zhang L and Miao H 2023 New J. Phys. 25 103051
[23] Wang S, Zhang J and Xu X 2022 Opt. Commun. 505 127592
[24] Wong W C and Li J 2023 New J. Phys. 25 033018
[25] Zuo X, Yan Z, Feng Y, Ma J, Jia X, Xie C and Peng K 2020 Phys. Rev. Lett. 124 173602
[26] Du W, Kong J, Bao G, Yang P, Jia J, Ming S, Yuan C H, Chen J F, Ou Z Y, Mitchell M W and Zhang W 2022 Phys. Rev. Lett. 128 033601
[27] Kong J, Ou Z Y and Zhang W 2013 Phys. Rev. A 87 023825
[28] Zhang J D, Jin C F, Zhang Z J, Cen L Z, Hu J Y and Zhao Y 2018 Opt. Express 26 33080
[29] Zhang J D, You C, Li C and Wang S 2021 Phys. Rev. A 103 032617
[30] Lang M D and Caves C M 2013 Phys. Rev. Lett. 111 173601
[31] Zhang J D, You C and Wang S 2022 Opt. Express 30 43143
[32] Sparaciari C, Olivares S and Paris M G A 2015 J. Opt. Soc. Am. B 32 1354
[33] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[34] Monras A and Paris M G A 2007 Phys. Rev. Lett. 98 160401
[35] Li D, Gard B T, Gao Y, Yuan C H, Zhang W, Lee H and Dowling J P 2016 Phys. Rev. A 94 063840
[36] Gao Y and Lee H 2014 Eur. Phys. J. D 68 347
[37] Agafonov I N, Chekhova M V and Leuchs G 2010 Phys. Rev. A 82 011801
[38] Zhang J D and Wang S 2023 Chin. Phys. B 32 010306
[39] Sparaciari C, Olivares S and Paris M G A 2016 Phys. Rev. A 93 023810
[40] Ono T and Hofmann H F 2010 Phys. Rev. A 81 033819
[41] Gard B T, You C, Mishra D K, Singh R, Lee H, Corbitt T R and Dowling J P 2017 EPJ Quantum Technol. 4 4
[1] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[2] Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction
Zhiyao Hu(胡知遥), Qixian Li(李其贤), Xuanchen Zhang(张轩晨), He-Bin Zhang(张贺宾), Long-Gang Huang(黄龙刚), and Yong-Chun Liu(刘永椿). Chin. Phys. B, 2024, 33(8): 080601.
[3] Enhancing quantum metrology for multiple frequencies of oscillating magnetic fields by quantum control
Xin Lei(雷昕), Jingyi Fan(范静怡), and Shengshi Pang(庞盛世). Chin. Phys. B, 2024, 33(6): 060304.
[4] Enhanced measurement precision with continuous interrogation during dynamical decoupling
Jun Zhang(张军), Peng Du(杜鹏), Lei Jing(敬雷), Peng Xu(徐鹏), Li You(尤力), and Wenxian Zhang(张文献). Chin. Phys. B, 2024, 33(3): 030301.
[5] Holevo bound independent of weight matrices for estimating two parameters of a qubit
Chang Niu(牛畅) and Sixia Yu(郁司夏). Chin. Phys. B, 2024, 33(2): 020304.
[6] Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert-Schmidt distance
Shaohua Xiang(向少华), Shanshan Li(李珊珊), and Xianwu Mi(米贤武). Chin. Phys. B, 2023, 32(5): 050309.
[7] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[8] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[9] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[10] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[11] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[12] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[13] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[14] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[15] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
No Suggested Reading articles found!