ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Entangling two levitated charged nanospheres through Coulomb interaction |
Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦)† |
Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Limited by the thermal environment, the entanglement of a massive object is extremely difficult to generate. Based on a coherent scattering mechanism, we propose a scheme to generate the entanglement of two optically levitated nanospheres through the Coulomb interaction. Two nanospheres are charged and coupled to each other through the Coulomb interaction. In this manner, the entanglement of two nanospheres is induced either under a weak/strong optomechanical coupling regime or under an ultra-strong optomechanical coupling regime. The charges, radius and distance of the two nanospheres are taken into consideration to enhance the Coulomb interaction, thereby achieving a higher degree of entanglement in the absence of ground-state cooling. The corresponding maximum entanglement can be attained as the dynamics of the system approaches the boundary between the steady and the unsteady regimes. This provides a useful resource for both quantum-enhanced sensing and quantum information processing, as well as a new platform for studying many-body physics.
|
Received: 22 December 2023
Revised: 12 February 2024
Accepted manuscript online: 11 March 2024
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: This research is supported by the National Natural Science Foundation of China (Grant No. 61771278) and the Beijing Institute of Technology Research Fund Program for Young Scholars. |
Corresponding Authors:
Zhangqi Yin
E-mail: zqyin@bit.edu.cn
|
Cite this article:
Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦) Entangling two levitated charged nanospheres through Coulomb interaction 2024 Chin. Phys. B 33 074205
|
[1] Graham T M, Song Y, Scott J, et al. 2022 Nature 604 457 [2] Zhong Y, Chang H S, Bienfait A, et al. 2021 Nature 590 571 [3] Abdi M, Pirandola S, Tombesi P and Vitali D 2012 Phys. Rev. Lett. 109 143601 [4] Gilmore K A, Affolter M, Lewis-Swan R J, Barberena D, Jordan E, Rey A M and Bollinger J J 2021 Science 373 673 [5] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F and Guo G C 2021 Nature 594 41 [6] Pompili M, Hermans S L, Baier S, et al. 2021 Science 372 259 [7] Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mücke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195 [8] Kotler S, Peterson G A, Shojaee, Lecocq F, Cicak K, Kwiatkowski A, Geller S, Glancy S, Knill E, Simmonds R W, José A and John D T 2021 Science 372 622 [9] Delić U, Reisenbauer M, Dare K, Grass D, Vuletić V, Kiesel N and Aspelmeyer M 2020 Science 367 892 [10] Ranfagni A, Børkje K, Marino F and Marin F 2022 Phys. Rev. Research 4 033051 [11] Jain V, Gieseler J, Moritz C, Dellago C, Quidant R and Novotny L 2016 Phys. Rev. Lett. 116 243601 [12] Rahman A A and Barker P 2016 Phys. Rev. A 107 013521 [13] Lepeshov S, Meyer N, Maurer P, Romero-Isart O and Quidant R 2023 Phys. Rev. Lett. 130 233601 [14] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [15] Tebbenjohanns F, Mattana M. L, Rossi M, Frimmer M and Novotny L 2021 Nature 595 378 [16] Magrini L, Rosenzweig P, Bach C, Deutschmann-Olek A, Hofer S G, Hong S, Kiesel N, Kugi A and Aspelmeyer M 2021 Nature 595 373 [17] Piotrowski J, Windey D, Vijayan J, Gonzalez-Ballestero C, de los Ríos Sommer A, Meyer N, Quidant R, Romero-Isart O, Reimann R and Novotny L 2023 Nat. Phys. 19 1009 [18] de los Ríos Sommer A, Meyer N and Quidant R 2021 Nat. Commun. 12 276 [19] Ranfagni A, Vezio P, Calamai M, Chowdhury A, Marino F and Marin F 2021 Nat. Phys. 17 1120 [20] Vijayan J, Piotrowski J, Gonzalez-Ballestero C, Weber K, Romero-Isart O and Novotny L 2023 arXiv:2308.14721 [21] Dare K, Hansen J J, Coroli I, Johnson A, Aspelmeyer M and Delić U 2023 arXiv:2305.16226 [22] Penny T, Pontin A and Barker P 2023 Phys. Rev. Research 5 013070 [23] Černotík O and Filip R 2020 Phys. Rev. Research 2 013052 [24] Pettit R M, Ge W, Kumar P, Luntz-Martin D R, Schultz J T, Neukirch L P, Bhattacharya M and Vamivakas A N 2019 Nat. Photonics 13 402 [25] Kuang T, Huang R, Xiong W, Zuo Y, Han X, Nori F, Qiu C W, Luo H, Jing H and Xiao G 2023 Nat. Phys. 19 414 [26] Rieser J, Ciampini M A, Rudolph H, Kiesel N, Hornberger K, Stickler B A, Aspelmeyer M and Delić U 2022 Science 377 987 [27] Zhu S C, Fu Z H, Gao X W, Li, C H, Chen Z M, Wang Y Y, Chen X F and Hu H Z 2023 Photonics Res. 11 279 [28] Ahn J, Xu Z J, Bang J, Ju P, Gao X Y and Li T C 2020 Nat. Nanotechnol. 15 89 [29] Millen J, Monteiro T S, Pettit R and Vamivakas A N 2020 Rep. Prog. Phys. 83 026401 [30] Gonzalez-Ballestero C, Aspelmeyer M, Novotny L, Quidant R and Romero-Isart O 2021 Science 374 3027 [31] Volpe G, Maragò O M, Rubinsztein-Dunlop H, et al. 2023 J. Phys.: Photonics 5 022501 [32] Rudolph H, Hornberger K and Stickler B A 2020 Phys. Rev. A 101 011804 [33] Brandão I, Tandeitnik D and Guerreiro T 2021 Quantum Sci. Technol. 6 045013 [34] Weiss T, Roda-Llordes M, Torrontegui E, Aspelmeyer M and RomeroIsart O 2021 Phys. Rev. Lett. 127 023601 [35] Rudolph H, Delić U, Aspelmeyer M, Hornberger K and Stickler B A 2022 Phys. Rev. Lett. 129 193602 [36] Gonzalez-Ballestero C, Maurer Patrick, Windey Dominik, Novotny L, Reimann R and Romero-Isart O 2019 Phys. Rev. A 100 013805 [37] Kockum A F, Miranowicz A, De Liberato S, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19 [38] Leroux C, Govia L and Clerk A A 2018 Phys. Rev. Lett. 120 093602 [39] Genes C, Mari A, Tombesi P and Vitali D 2008 Phys. Rev. A 78 032316 [40] Vitali D, Gigan S, Ferreira A, Böhm H, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 [41] Iwasaki M, Yotsuya T, Naruki T, Matsuda Y, Yoneda M and Aikawa K 2019 Phys. Rev. A 99 051401 [42] Beresnev S A and Chernyak V G and Fomyagin G A 1990 J. Fluid Mech. 219 405 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|