|
|
Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state |
Ao Wang(汪澳)1, Yu-Zhen Wei(魏玉震)3, Min Jiang(姜敏)1,2,†, Yong-Cheng Li(李泳成)1,‡, Hong Chen(陈虹)1, and Xu Huang(黄旭)1 |
1 School of Electronics & Information Engineering, Soochow University, Suzhou 215006, China; 2 Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai 200240, China; 3 School of Information Engineering, Huzhou University, Huzhou 313000, China |
|
|
Abstract We propose a new protocol for quantum teleportation (QT) which adopts the Brown state as the quantum channel. This work focuses on the teleportation of a single unknown two-qubit state via a Brown state channel in an ideal environment. To validate the effectiveness of our proposed scheme, we conduct experiments by using the quantum circuit simulator Quirk. Furthermore, we investigate the effects of four noisy channels, namely, the phase damping noise, the bit-flip noise, the amplitude damping noise, and the phase-flip noise. Notably, we employ Monte Carlo simulation to elucidate the fidelity density under various noise parameters. Our analysis demonstrates that the fidelity of the protocol in a noisy environment is influenced significantly by the amplitude of the initial state and the noise factor.
|
Received: 06 January 2024
Revised: 06 April 2024
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61873162) and Fund from the Key Laboratory of System Control and Information Processing, Ministry of Education, China (Grant No. Scip20240106). |
Corresponding Authors:
Min Jiang, Yong-Cheng Li
E-mail: jiangmin0629@163.com;ycli@suda.edu.cn
|
Cite this article:
Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭) Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state 2024 Chin. Phys. B 33 080307
|
[1] Jozsa R and Linden N 2003 Proc. Math. Phys. Eng. Sci. 459 2011 [2] Wang Y Z 2012 Stat. Sci. 27 373 [3] Ban M 2001 Opt. Commun. 189 97 [4] Jiang X Q, Xue S, Tang J, Huang P and Zeng G 2024 Quantum Sci. Technol. 9 025008 [5] Zhou Y H, Yu Z W, Li A, Hu X L and Jiang C 2018 Sci. Rep. 8 4115 [6] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [7] Zhang H, Zhang C, Hu X M, Liu B H, Huang Y F, Li C F and Guo G C 2019 Phys. Rev. A 99 052301 [8] Joo J, Park Y J, Oh S and Kim J 2003 New J. Phys. 5 136 [9] Agrawal P and Pati A 2006 Phys. Rev. A 74 5 [10] Xu K, Kuang H Y and Guo Y 2013 Int. J. Theor. Phys. 52 3432 [11] Yan F L and Yan T 2010 Sci. Bull. 55 902 [12] Cao H J and Wang H S 2012 Int. J. Theor. Phys. 51 1448 [13] Brassard G and Methot A A 2010 Found. Phys. 40 463 [14] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706 [15] Brown I D K, Stepney S, Sudbery A and Braunstein S L 2005 J. Phys. A: Math. Gen. 38 1119 [16] Muralidharan S and Panigrahi P K 2007 Phys. Rev. A 77 032321 [17] Chen X B, Ma S Y, Su Y, Zhang R and Yang Y X 2012 Quantum Inf. Process. 11 1653 [18] Fang S H and Jiang M 2017 Int. J. Theor. Phys. 56 1530 [19] Dong T and Ma S Y 2018 Int. J. Theor. Phys. 57 3563 [20] Wang N N and Ma S Y 2020 Int. J. Theor. Phys. 59 2816 [21] Hu T, Yang Q, Xue K, Wang G, Zhang Y, Li X and Ren H 2016 Quantum Inf. Process. 16 21 [22] Banaszek K 2001 Phys. Rev. Lett. 86 1366 [23] Oh S, Lee S and Lee H W 2002 Phys. Rev. A 66 052318 [24] Fortes R and Rigolin G 2015 Phys. Rev. A 92 012338 [25] He L M, Wang N and Zhou P 2020 Int. J. Theor. Phys. 59 1081 [26] Seida C, El Allati A, Metwally N and Hassouni Y 2021 Eur. Phys. J. D 75 170 [27] Mastriani M, Iyengar S S and Kumar L 2021 SN Comput. Sci. 2 29 [28] Bengtsson I and Zyczkowski K 2006 Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press) [29] Kang S Y, Chen X B and Yang Y X 2013 Int. J. Theor. Phys. 52 3413 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|