|
|
Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system |
Fang-Fang Du(杜芳芳)1,†, Gang Fan(樊钢)1, Yi-Ming Wu(吴一鸣)1, and Bao-Cang Ren(任宝藏)2,‡ |
1 Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China; 2 Department of Physics, Capital Normal University, Beijing 100048, China |
|
|
Abstract We present a faithful and efficient hyperentanglement purification protocol (hyper-EPP) for nonlocal two-photon systems in spatial-polarization-time-bin hyperentangled Bell states. As the single-photon detectors can detect and herald the undesirable properties caused by side leakage and finite coupling strength, the parity-check gates and swap gates of our hyper-EPP in the spatial, polarization and time-bin mode degrees of freedom (DoFs) work faithfully. The qubit-flip errors in photon systems in three DoFs can be corrected effectively with the faithful parity-check gates and the photon pairs can be reused to distill high-fidelity ones by introducing the faithful swap gates, which greatly increases the efficiency of our hyper-EPP. Further, the maximal hyperentanglement can be obtained in principle by operating multiple rounds of the hyper-EPP.
|
Received: 11 July 2022
Revised: 17 October 2022
Accepted manuscript online: 17 November 2022
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61901420 and 11604226), the Shanxi Province Science Foundation for Youths (Grant No. 201901D211235), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0507), and the Program of Beijing Municipal Commission of Education of China (Grant Nos. CIT&TCD201904080 and KM201810028005). |
Corresponding Authors:
Fang-Fang Du, Bao-Cang Ren
E-mail: Duff@nuc.edu.cn;renbaocang@cnu.edu.cn
|
Cite this article:
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏) Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system 2023 Chin. Phys. B 32 060304
|
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661 [2] Zhao Y B, Zhang W L, Wang D, Song X T, Zhou L J and Ding C B 2019 Chin. Phys. B 28 104203 [3] Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. Chin. Phys. Mech. Astron. 62 110311 [4] Li J J, Wang Y, Li H W and Bao W S 2020 Chin. Phys. B 29 030303 [5] Li X, Yuan H W, Zhang C M and Wang Q 2020 Chin. Phys. B 29 070303 [6] Zhao P, Zhou L, Zhong W and Sheng Y B 2021 Europhys. Lett. 135 40001 [7] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829 [8] Luo G F, Zhou R G and Hu W W 2019 Chin. Phys. B 28 040302 [9] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301 [10] Gao Z K, Li T and Li Z H 2020 Sci. Chin. Phys. Mech. Astron. 63 120311 [11] Wang Y, Lou X P, Fan Z, Wang S and Huang G 2022 Int. J. Theor. Phys. 61 24 [12] Chen X X and Huang G 2022 Int. J. Theor. Phys. 61 99 [13] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [14] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501 [15] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519 [16] Gao Z K, Li T and Li Z H 2019 Europhys. Lett. 125 40004 [17] Li T and Long G L 2020 New J. Phys. 22 063017 [18] Qi Z T, Li Y H, Huang Y W, Feng J, Zheng Y L and Chen X F 2021 Light Sci. Appl. 10 183 [19] Long G L and Zhang H R 2021 Sci. Bull. 66 1267 [20] Sheng Y B, Zhou L and Long G L 2022 Sci. Bull. 67 367 [21] Liu X, Li Z J, Luo D, Huang C F, Ma D, Geng M M, Wang J W, Zhang Z R and Wei K J 2021 Sci. Chin. Phys. Mech. Astron. 64 120311 [22] Barreiro J T, Langford N K, Peters N A and Kwiat P G. 2005 Phys. Rev. Lett. 95 260501 [23] Ceccarelli R, Vallone G, Martini F D, Mataloni P and Cabello A 2005 Phys. Rev. Lett. 103 160401 [24] Vallone G, Ceccarelli R, Martini F D and Mataloni P 2009 Phys. Rev. A 79 030301 [25] Yabushita A and Kobayashi T 2004 Phys. Rev. A 69 013806 [26] Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282 [27] Trávníček V, Bartkiewicz K, Černoch A and Lemr K 2008 Phys. Rev. A 98 032307 [28] Simon D S and Sergienko A V 2014 New J. Phys. 16 063052 [29] Chen K L, Che M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A and Pan J W 2007 Phys. Rev. Lett. 99 120503 [30] Zhou X J, Liu W Q, Wei H R, Zheng Y B and Du F F 2022 Front. Phys. 17 41502 [31] Zhou X J, Liu W Q, Zheng Y B, Wei H R and Du F F 2022 Ann. Phys. 534 2100509 [32] Wang P, Yu C Q, Wang Z X, Yuan R Y, Du F F and Ren B C 2021 Front. Phys. 17 31501 [33] Du F F, Wu Y M, Fan G and Ma Z M 2023 Ann. Phys. 535 2200507 [34] R B C, Wang G Y and Deng F G 2015 Phys. Rev. A 91 032328 [35] Li T and Long G L 2016 Phys. Rev. A 94 022343 [36] Wei H R, Deng F G and Long G L 2016 Opt. Express 24 18619 [37] Du F F and Shi Z R 2019 Opt. Express 27 17493 [38] Han Y H, Cao C, Fan L and Zhang R 2021 Opt. Express 29 20045 [39] Wu Y M, Fan G and Du F F 2022 Front. Phys. 17 51502 [40] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722 [41] Pan J W, Simon C, Brukner Č and Zeilinger A 2001 Nature 410 1067 [42] Zhou L, Liu Z K, Xu Z X, Cui Y L, Ran H J and Sheng Y B 2021 Quantum Inf. Process. 20 257 [43] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308 [44] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307 [45] Wang C, Zhang Y and Zhang R 2011 Opt. Express 19 25685 [46] Gonta D and van Loock P 2012 Phys. Rev. A 86 052312 [47] Ren B C and Deng F G 2013 Laser Phys. Lett. 10 115201 [48] Wang G Y, Liu Q and Deng F G 2016 Phys. Rev. A 94 032319 [49] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309 [50] Wang G Y, Li T, Ai Q, Alsaedi A, Hayat T and Deng F G 2018 Phys. Rev. Appl. 10 054058 [51] Du F F, Liu Y T, Shi Z R, Liang Y X, Tang J and Liu J 2019 Opt. Express 27 27046 [52] Zhou L and Sheng Y B 2016 Scientific Reports 6 28813 [53] Zhou L and Sheng Y B 2017 Annals of Physics 385 10 [54] Zhang H, Liu Q, Xu X S, Xiong J, Alsaedi A, Hayat T and Deng F G 2017 Phys. Rev. A 96 052330 [55] Miguel-Ramiro J and Dür W 2018 Phys. Rev. A 98 042309 [56] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307 [57] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305 [58] Yan P S, Zhou L, Zhong W and Sheng Y B 2021 Front. Phys. 17 21501 [59] Yan P S, Zhou L, Zhong W and Sheng Y B 2021 Opt. Express 29 9363 [60] Riera-Sàbat F, Sekatski P, Pirker A. and Dür W 2021 Phys. Rev. A 104 012419 [61] Rozpȩdek F, Schiet T, Thinh L P, Elkouss D, Doherty A C and Wehner S 2018 Phys. Rev. A 97 062333 [62] Krastanov S, Albert V V and Jiang L 2019 Quantum 3 123 [63] Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 417 423 [64] Chen L K, Yong H L, Xu P, Yao X C, Xiang T, Li Z D, Liu C, Lu H, Liu N L, Li L, Yang T, Peng C Z, Zhao B, Chen Y A and Pan J W 2017 Nat. Photonics 11 695 [65] Reichle R, Leibfried D, Knill E, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2006 Nature 443 838 [66] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F and Guo G C 2021 Phys. Rev. Lett. 126 010503 [67] Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol. 9 981 [68] Pursley B C, Carter S G, Yakes M K, Bracker A S and Gammon D 2018 Nat. Commun. 9 115 [69] Berezovsky J, Mikkelsen M H, Stoltz N G, Coldren L A and Awschalom D D 2008 Science 320 349 [70] Reithmaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197 [71] Abe E, Wu H, Ardavan A and Morton J J L 2011 Appl. Phys. Lett. 98 251108 [72] Lagoudakis K G, Fischer K, Sarmiento T, Majumdar A, Rundquist A, Lu J, Bajcsy M and Vučković J 2013 New J. Phys. 15 113056 [73] Hu C Y, Young A, O’Brien J L, Munro W J and Rarity J G 2008 Phys. Rev. B 78 085307 [74] Soudagar Y, Bussieres F, Bèrlín G, Lacroix S, Fernandez J and Godbout N 2007 J. Opt. Soc. Am. B 24 226 [75] Han X, Hu S, Guo Q, Wang H F and Zhang S 2015 Quantum Inf. Process. 14 1919 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|