Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 060304    DOI: 10.1088/1674-1056/aca395
GENERAL Prev   Next  

Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system

Fang-Fang Du(杜芳芳)1,†, Gang Fan(樊钢)1, Yi-Ming Wu(吴一鸣)1, and Bao-Cang Ren(任宝藏)2,‡
1 Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China;
2 Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  We present a faithful and efficient hyperentanglement purification protocol (hyper-EPP) for nonlocal two-photon systems in spatial-polarization-time-bin hyperentangled Bell states. As the single-photon detectors can detect and herald the undesirable properties caused by side leakage and finite coupling strength, the parity-check gates and swap gates of our hyper-EPP in the spatial, polarization and time-bin mode degrees of freedom (DoFs) work faithfully. The qubit-flip errors in photon systems in three DoFs can be corrected effectively with the faithful parity-check gates and the photon pairs can be reused to distill high-fidelity ones by introducing the faithful swap gates, which greatly increases the efficiency of our hyper-EPP. Further, the maximal hyperentanglement can be obtained in principle by operating multiple rounds of the hyper-EPP.
Keywords:  quantum communication      hyperentanglement purification      photon system      multiple degrees of freedom  
Received:  11 July 2022      Revised:  17 October 2022      Accepted manuscript online:  17 November 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61901420 and 11604226), the Shanxi Province Science Foundation for Youths (Grant No. 201901D211235), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0507), and the Program of Beijing Municipal Commission of Education of China (Grant Nos. CIT&TCD201904080 and KM201810028005).
Corresponding Authors:  Fang-Fang Du, Bao-Cang Ren     E-mail:  Duff@nuc.edu.cn;renbaocang@cnu.edu.cn

Cite this article: 

Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏) Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system 2023 Chin. Phys. B 32 060304

[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Zhao Y B, Zhang W L, Wang D, Song X T, Zhou L J and Ding C B 2019 Chin. Phys. B 28 104203
[3] Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. Chin. Phys. Mech. Astron. 62 110311
[4] Li J J, Wang Y, Li H W and Bao W S 2020 Chin. Phys. B 29 030303
[5] Li X, Yuan H W, Zhang C M and Wang Q 2020 Chin. Phys. B 29 070303
[6] Zhao P, Zhou L, Zhong W and Sheng Y B 2021 Europhys. Lett. 135 40001
[7] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[8] Luo G F, Zhou R G and Hu W W 2019 Chin. Phys. B 28 040302
[9] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301
[10] Gao Z K, Li T and Li Z H 2020 Sci. Chin. Phys. Mech. Astron. 63 120311
[11] Wang Y, Lou X P, Fan Z, Wang S and Huang G 2022 Int. J. Theor. Phys. 61 24
[12] Chen X X and Huang G 2022 Int. J. Theor. Phys. 61 99
[13] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[14] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[15] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
[16] Gao Z K, Li T and Li Z H 2019 Europhys. Lett. 125 40004
[17] Li T and Long G L 2020 New J. Phys. 22 063017
[18] Qi Z T, Li Y H, Huang Y W, Feng J, Zheng Y L and Chen X F 2021 Light Sci. Appl. 10 183
[19] Long G L and Zhang H R 2021 Sci. Bull. 66 1267
[20] Sheng Y B, Zhou L and Long G L 2022 Sci. Bull. 67 367
[21] Liu X, Li Z J, Luo D, Huang C F, Ma D, Geng M M, Wang J W, Zhang Z R and Wei K J 2021 Sci. Chin. Phys. Mech. Astron. 64 120311
[22] Barreiro J T, Langford N K, Peters N A and Kwiat P G. 2005 Phys. Rev. Lett. 95 260501
[23] Ceccarelli R, Vallone G, Martini F D, Mataloni P and Cabello A 2005 Phys. Rev. Lett. 103 160401
[24] Vallone G, Ceccarelli R, Martini F D and Mataloni P 2009 Phys. Rev. A 79 030301
[25] Yabushita A and Kobayashi T 2004 Phys. Rev. A 69 013806
[26] Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
[27] Trávníček V, Bartkiewicz K, Černoch A and Lemr K 2008 Phys. Rev. A 98 032307
[28] Simon D S and Sergienko A V 2014 New J. Phys. 16 063052
[29] Chen K L, Che M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A and Pan J W 2007 Phys. Rev. Lett. 99 120503
[30] Zhou X J, Liu W Q, Wei H R, Zheng Y B and Du F F 2022 Front. Phys. 17 41502
[31] Zhou X J, Liu W Q, Zheng Y B, Wei H R and Du F F 2022 Ann. Phys. 534 2100509
[32] Wang P, Yu C Q, Wang Z X, Yuan R Y, Du F F and Ren B C 2021 Front. Phys. 17 31501
[33] Du F F, Wu Y M, Fan G and Ma Z M 2023 Ann. Phys. 535 2200507
[34] R B C, Wang G Y and Deng F G 2015 Phys. Rev. A 91 032328
[35] Li T and Long G L 2016 Phys. Rev. A 94 022343
[36] Wei H R, Deng F G and Long G L 2016 Opt. Express 24 18619
[37] Du F F and Shi Z R 2019 Opt. Express 27 17493
[38] Han Y H, Cao C, Fan L and Zhang R 2021 Opt. Express 29 20045
[39] Wu Y M, Fan G and Du F F 2022 Front. Phys. 17 51502
[40] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[41] Pan J W, Simon C, Brukner Č and Zeilinger A 2001 Nature 410 1067
[42] Zhou L, Liu Z K, Xu Z X, Cui Y L, Ran H J and Sheng Y B 2021 Quantum Inf. Process. 20 257
[43] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[44] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[45] Wang C, Zhang Y and Zhang R 2011 Opt. Express 19 25685
[46] Gonta D and van Loock P 2012 Phys. Rev. A 86 052312
[47] Ren B C and Deng F G 2013 Laser Phys. Lett. 10 115201
[48] Wang G Y, Liu Q and Deng F G 2016 Phys. Rev. A 94 032319
[49] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[50] Wang G Y, Li T, Ai Q, Alsaedi A, Hayat T and Deng F G 2018 Phys. Rev. Appl. 10 054058
[51] Du F F, Liu Y T, Shi Z R, Liang Y X, Tang J and Liu J 2019 Opt. Express 27 27046
[52] Zhou L and Sheng Y B 2016 Scientific Reports 6 28813
[53] Zhou L and Sheng Y B 2017 Annals of Physics 385 10
[54] Zhang H, Liu Q, Xu X S, Xiong J, Alsaedi A, Hayat T and Deng F G 2017 Phys. Rev. A 96 052330
[55] Miguel-Ramiro J and Dür W 2018 Phys. Rev. A 98 042309
[56] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[57] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[58] Yan P S, Zhou L, Zhong W and Sheng Y B 2021 Front. Phys. 17 21501
[59] Yan P S, Zhou L, Zhong W and Sheng Y B 2021 Opt. Express 29 9363
[60] Riera-Sàbat F, Sekatski P, Pirker A. and Dür W 2021 Phys. Rev. A 104 012419
[61] Rozpȩdek F, Schiet T, Thinh L P, Elkouss D, Doherty A C and Wehner S 2018 Phys. Rev. A 97 062333
[62] Krastanov S, Albert V V and Jiang L 2019 Quantum 3 123
[63] Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 417 423
[64] Chen L K, Yong H L, Xu P, Yao X C, Xiang T, Li Z D, Liu C, Lu H, Liu N L, Li L, Yang T, Peng C Z, Zhao B, Chen Y A and Pan J W 2017 Nat. Photonics 11 695
[65] Reichle R, Leibfried D, Knill E, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2006 Nature 443 838
[66] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F and Guo G C 2021 Phys. Rev. Lett. 126 010503
[67] Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol. 9 981
[68] Pursley B C, Carter S G, Yakes M K, Bracker A S and Gammon D 2018 Nat. Commun. 9 115
[69] Berezovsky J, Mikkelsen M H, Stoltz N G, Coldren L A and Awschalom D D 2008 Science 320 349
[70] Reithmaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
[71] Abe E, Wu H, Ardavan A and Morton J J L 2011 Appl. Phys. Lett. 98 251108
[72] Lagoudakis K G, Fischer K, Sarmiento T, Majumdar A, Rundquist A, Lu J, Bajcsy M and Vučković J 2013 New J. Phys. 15 113056
[73] Hu C Y, Young A, O’Brien J L, Munro W J and Rarity J G 2008 Phys. Rev. B 78 085307
[74] Soudagar Y, Bussieres F, Bèrlín G, Lacroix S, Fernandez J and Godbout N 2007 J. Opt. Soc. Am. B 24 226
[75] Han X, Hu S, Guo Q, Wang H F and Zhang S 2015 Quantum Inf. Process. 14 1919
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[3] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[4] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[5] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[6] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[7] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[8] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[9] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[10] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[11] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[12] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[13] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[14] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
[15] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
No Suggested Reading articles found!