Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 014205    DOI: 10.1088/1674-1056/ad8db3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev  

Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber

Chen-Yan Zhang(张辰妍)1,†, Xin-He Dou(窦鑫河)1,†, Zhen Chen(陈震)1, Jing-Han Zhao(赵靖涵)1, Wei Sun(孙薇)1, Ze-Yu Fan(樊泽宇)1, Tao Zhang(张涛)1, Hao Teng(滕浩)2, and Zhi-Guo Lv(吕志国)1,‡
1 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In the last few years, research on advanced ultrafast photonic devices has attracted great interest from laser physicists. As a semiconductor material with excellent nonlinear saturation absorption characteristics, GaAs has been used in solid-state and fiber lasers as a mode-locker. However, the pulse widths that have been reported in the searchable published literature are all long and the shortest is tens of picoseconds. Femtosecond pulse widths, desired for a variety of applications, have not yet been reported in GaAs-based pulsed lasers. In this work, we further explore the nonlinear characteristics of GaAs that has been magnetron sputtered onto the surface of a tapered fiber and its application in the generation of femtosecond lasing via effective dispersion optimization and nonlinearity management. With the enhanced interaction between evanescent waves and GaAs nanosheets, mode-locked soliton pulses as short as 830 fs are generated at repetition rates of 4.64 MHz. As far as we know, this is the first time that femtosecond-level pulses have been generated with a GaAs-based saturable absorber. In addition, soliton molecules, including in the dual-pulse state, are also realized under stronger pumping. This work demonstrates that GaAs-based photonic devices have good application prospects in effective polymorphous ultrashort pulsed laser generation.
Keywords:  GaAs      saturable absorber      mode-locking      soliton molecule  
Received:  24 September 2024      Revised:  20 October 2024      Accepted manuscript online:  01 November 2024
PACS:  42.55.Wd (Fiber lasers)  
  42.60.-v (Laser optical systems: design and operation)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.60.Gd (Q-switching)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12164030), Young Science and Technology Talents of Inner Mongolia, China (Grant No. NJYT22101), the Central Government Guides Local Science, the Technology Development Fund Projects (Grant No. 2023ZY0005), and the Science and Technology Plan Projects of Inner Mongolia Autonomous Region of China (Grant No. 2023KYPT0012).
Corresponding Authors:  Zhi-Guo Lv     E-mail:  lvzhiguo@imu.edu.cn

Cite this article: 

Chen-Yan Zhang(张辰妍), Xin-He Dou(窦鑫河), Zhen Chen(陈震), Jing-Han Zhao(赵靖涵), Wei Sun(孙薇), Ze-Yu Fan(樊泽宇), Tao Zhang(张涛), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国) Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber 2025 Chin. Phys. B 34 014205

[1] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Prog. Quantum Electron. 71 100264
[2] Han Y, Gao B, Wen H, Ma C, Huo J, Li Y, Zhou L, Li Q, Wu G and Liu L 2024 Light Sci. Appl. 13 101
[3] Li L, Xue Z, Pang L H, Xiao X S, Yang H R, Zhang J N, Zhang Y M, Zhao Q Y and Liu W J 2024 Opt. Lett. 49 1293
[4] Li L R, Li X H, Zhao Y, Feng J J, Zhang C X C X, Shi Y, Ge Y Q and Zhang Y N 2022 Nanotechnology 33 18
[5] Han Y H, Li X H, Chen E C, An M Q, Song Z Y, Huang X Z, Liu X F, Wang Y S and Zhao W 2022 Adv. Opt. Mater. 10 2201034
[6] Wang G, Baker-Murray A A and Blau W J 2019 Laser Photonics Rev. 13 1800282
[7] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[8] Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S and Tang D 2012 Appl. Phys. Lett. 101 211106
[9] Sun Z H, Jiang X T, Wen Q, Li W J and Zhang H 2019 J. Mater. Chem. C 7 4662
[10] Li P F, Chen Y, Yang T S, Wang Z Y, Lin H, Xu Y H and Li L 2017 ACS Appl. Mater. Interfaces 9 12759
[11] Jiang X T, Li W J, Hai T, Yue R, Chen Z W, Lao C S, Ge Y Q, Xie G Q, Wen Q and Zhang H 2019 NPJ 2D Mater. Appl. 3 34
[12] Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and Wang J 2014 Adv. Mater. 26 3538
[13] Sotor J, Sobon J, Kowalczyk M, Macherzynski W, Paletko P and Abramski K M 2015 Opt. Lett. 40 3885
[14] Wang J L, Wang X L, Lei J J, Ma M Y, Wang C, Ge Y Q and Wei Z Y 2020 Nanophotonics 9 2315
[15] Liu X M, Popa D and Akhmediev N 2019 Phys. Rev. Lett. 123 093901
[16] Su X B, Shao F H, Hao H M, Liu H Q, Li S L, Dai D Y, Shang X J, Wang T F, Zhang Y, Yang C A, Xu Y Q, Ni H Q, Ding Y and Niu Z C 2023 Chin. Phys. B 32 098103
[17] Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q and Liu W J 2023 Chin. Phys. B 32 054201
[18] Jiang T, Yin K, Wang C, You J, Ouyang H, Miao R L, Zhang C X, Wei K, Li H, Chen H T, hang R Y, Zheng X, Xu Z J, Cheng X G and Zhang H 2020 Photonics Res. 8 78
[19] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y S, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[20] Li L, Pang L, Zhao Q, Wang Y and Liu W 2020 Nanophotonics 9 2569
[21] Paajaste J, Suomalainen S, Koskinen R, Härkönen A, Steinmeyer G and Guina M 2012 Phys. Stat. Solid. C 9 294
[22] Liu X M and Pang M 2019 Laser Photonics Rev. 13 1800333
[23] Ma H C, Wang Y X and Deng A P 2022 Chin. Phys. B 31 010201
[24] Milovanov Y, Skryshevsky V, Gavrilchenko I, Oksanich A, Pritchin S and Kogdas M 2019 J. Electron. Mater. 48 2587
[25] Lockwood D J, Schmuki P, Labbe H J and Fraser J W 1999 Physica E 4 102
[26] Akinlami J O and Ashamu A O 2013 JOS 34 032002
[27] Kajava T T and Gaeta A L 1996 Opt. Lett. 21 1244
[28] Scurtescu C, Zhang Z Y, Alcock J, Fedosejevs R, Blumin M, Saveliev I, Yang S, Ruda H and Tsui Y Y 2007 Appl. Phys. B: Lasers Opt. 87 671
[29] Li D C, Zhao S Z, Li G Q and Yang K J 2010 Optik 121 478
[30] Li P, Wang Q P, Zhang X Y, Wang Y R, Li S C, He J L and Lu X Q 2001 Opt. Laser Technol. 33 383
[31] Yang S, Yang Y Y, Zhang L, Huang J Y, Bai Y R and Lin X C 2019 Optik 178 1218
[32] Li J, Pan Y B, Zeng Y P, Liu W B, Jiang B X and Guo J K 2013 Int. J. Refract Met. H 39 44
[33] Engelhard M H, Lyubinetsky A and Baer D R 2016 Surf. Sci. Spectra 23 83
[34] Du J, Wang Q K, Jiang G B, Xu C W, Zhao C J, Xiang Y J, Chen Y, Wen S C and Zhang H 2014 Sci. Rep. 4 6346
[35] Olivier M and Piché M 2019 Opt. Express 17 405
[36] Chen Z K, Zhou J and Zhao J Q 2023 IEEE J. Quantum Electron. 59 1600207
[37] Liu R M, Wang T S, Ma W Z, Zhao D S, Lin P, Wang F R and Zhao Y W 2019 IEEE Photonic Tech. Lett. 31 341
[1] Manganese dioxide as wide adaptive ultrafast photonic device for pulsed laser generation
Xin-He Dou(窦鑫河), Zhen Chen(陈震), Chen-Yan Zhang(张辰妍), Xiang Li(李响), Fei-Hong Qiao(乔飞鸿), Bo-Le Song(宋博乐), Shan Wang(王珊), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国). Chin. Phys. B, 2024, 33(11): 114202.
[2] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[3] Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(7): 074203.
[4] Antimonene-based saturable absorber for a soliton mode-locked and Q-switched fiber laser in the 2 μm wavelength region
H Ahmad, B Nizamani, M Z Samion, N Yusoff, and M F Ismail. Chin. Phys. B, 2023, 32(6): 064205.
[5] A 54-fs diode-pumped Kerr-lens mode-locked Yb:LuYSiO5laser
Yang Yu(于洋), Yuehang Chen(陈月航), Wenlong Tian(田文龙), Li Zheng(郑立), Geyang Wang(王阁阳), Chuan Bai(白川), Xuan Tian(田轩), Haijing Mai(麦海静), Yulong Su(苏玉龙), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(6): 064204.
[6] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[7] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[8] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[9] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[10] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[11] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[12] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[13] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[14] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[15] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
No Suggested Reading articles found!