ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
|
|
|
Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber |
Chen-Yan Zhang(张辰妍)1,†, Xin-He Dou(窦鑫河)1,†, Zhen Chen(陈震)1, Jing-Han Zhao(赵靖涵)1, Wei Sun(孙薇)1, Ze-Yu Fan(樊泽宇)1, Tao Zhang(张涛)1, Hao Teng(滕浩)2, and Zhi-Guo Lv(吕志国)1,‡ |
1 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract In the last few years, research on advanced ultrafast photonic devices has attracted great interest from laser physicists. As a semiconductor material with excellent nonlinear saturation absorption characteristics, GaAs has been used in solid-state and fiber lasers as a mode-locker. However, the pulse widths that have been reported in the searchable published literature are all long and the shortest is tens of picoseconds. Femtosecond pulse widths, desired for a variety of applications, have not yet been reported in GaAs-based pulsed lasers. In this work, we further explore the nonlinear characteristics of GaAs that has been magnetron sputtered onto the surface of a tapered fiber and its application in the generation of femtosecond lasing via effective dispersion optimization and nonlinearity management. With the enhanced interaction between evanescent waves and GaAs nanosheets, mode-locked soliton pulses as short as 830 fs are generated at repetition rates of 4.64 MHz. As far as we know, this is the first time that femtosecond-level pulses have been generated with a GaAs-based saturable absorber. In addition, soliton molecules, including in the dual-pulse state, are also realized under stronger pumping. This work demonstrates that GaAs-based photonic devices have good application prospects in effective polymorphous ultrashort pulsed laser generation.
|
Received: 24 September 2024
Revised: 20 October 2024
Accepted manuscript online: 01 November 2024
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.-v
|
(Laser optical systems: design and operation)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.60.Gd
|
(Q-switching)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12164030), Young Science and Technology Talents of Inner Mongolia, China (Grant No. NJYT22101), the Central Government Guides Local Science, the Technology Development Fund Projects (Grant No. 2023ZY0005), and the Science and Technology Plan Projects of Inner Mongolia Autonomous Region of China (Grant No. 2023KYPT0012). |
Corresponding Authors:
Zhi-Guo Lv
E-mail: lvzhiguo@imu.edu.cn
|
Cite this article:
Chen-Yan Zhang(张辰妍), Xin-He Dou(窦鑫河), Zhen Chen(陈震), Jing-Han Zhao(赵靖涵), Wei Sun(孙薇), Ze-Yu Fan(樊泽宇), Tao Zhang(张涛), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国) Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber 2025 Chin. Phys. B 34 014205
|
[1] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Prog. Quantum Electron. 71 100264 [2] Han Y, Gao B, Wen H, Ma C, Huo J, Li Y, Zhou L, Li Q, Wu G and Liu L 2024 Light Sci. Appl. 13 101 [3] Li L, Xue Z, Pang L H, Xiao X S, Yang H R, Zhang J N, Zhang Y M, Zhao Q Y and Liu W J 2024 Opt. Lett. 49 1293 [4] Li L R, Li X H, Zhao Y, Feng J J, Zhang C X C X, Shi Y, Ge Y Q and Zhang Y N 2022 Nanotechnology 33 18 [5] Han Y H, Li X H, Chen E C, An M Q, Song Z Y, Huang X Z, Liu X F, Wang Y S and Zhao W 2022 Adv. Opt. Mater. 10 2201034 [6] Wang G, Baker-Murray A A and Blau W J 2019 Laser Photonics Rev. 13 1800282 [7] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077 [8] Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S and Tang D 2012 Appl. Phys. Lett. 101 211106 [9] Sun Z H, Jiang X T, Wen Q, Li W J and Zhang H 2019 J. Mater. Chem. C 7 4662 [10] Li P F, Chen Y, Yang T S, Wang Z Y, Lin H, Xu Y H and Li L 2017 ACS Appl. Mater. Interfaces 9 12759 [11] Jiang X T, Li W J, Hai T, Yue R, Chen Z W, Lao C S, Ge Y Q, Xie G Q, Wen Q and Zhang H 2019 NPJ 2D Mater. Appl. 3 34 [12] Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and Wang J 2014 Adv. Mater. 26 3538 [13] Sotor J, Sobon J, Kowalczyk M, Macherzynski W, Paletko P and Abramski K M 2015 Opt. Lett. 40 3885 [14] Wang J L, Wang X L, Lei J J, Ma M Y, Wang C, Ge Y Q and Wei Z Y 2020 Nanophotonics 9 2315 [15] Liu X M, Popa D and Akhmediev N 2019 Phys. Rev. Lett. 123 093901 [16] Su X B, Shao F H, Hao H M, Liu H Q, Li S L, Dai D Y, Shang X J, Wang T F, Zhang Y, Yang C A, Xu Y Q, Ni H Q, Ding Y and Niu Z C 2023 Chin. Phys. B 32 098103 [17] Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q and Liu W J 2023 Chin. Phys. B 32 054201 [18] Jiang T, Yin K, Wang C, You J, Ouyang H, Miao R L, Zhang C X, Wei K, Li H, Chen H T, hang R Y, Zheng X, Xu Z J, Cheng X G and Zhang H 2020 Photonics Res. 8 78 [19] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y S, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [20] Li L, Pang L, Zhao Q, Wang Y and Liu W 2020 Nanophotonics 9 2569 [21] Paajaste J, Suomalainen S, Koskinen R, Härkönen A, Steinmeyer G and Guina M 2012 Phys. Stat. Solid. C 9 294 [22] Liu X M and Pang M 2019 Laser Photonics Rev. 13 1800333 [23] Ma H C, Wang Y X and Deng A P 2022 Chin. Phys. B 31 010201 [24] Milovanov Y, Skryshevsky V, Gavrilchenko I, Oksanich A, Pritchin S and Kogdas M 2019 J. Electron. Mater. 48 2587 [25] Lockwood D J, Schmuki P, Labbe H J and Fraser J W 1999 Physica E 4 102 [26] Akinlami J O and Ashamu A O 2013 JOS 34 032002 [27] Kajava T T and Gaeta A L 1996 Opt. Lett. 21 1244 [28] Scurtescu C, Zhang Z Y, Alcock J, Fedosejevs R, Blumin M, Saveliev I, Yang S, Ruda H and Tsui Y Y 2007 Appl. Phys. B: Lasers Opt. 87 671 [29] Li D C, Zhao S Z, Li G Q and Yang K J 2010 Optik 121 478 [30] Li P, Wang Q P, Zhang X Y, Wang Y R, Li S C, He J L and Lu X Q 2001 Opt. Laser Technol. 33 383 [31] Yang S, Yang Y Y, Zhang L, Huang J Y, Bai Y R and Lin X C 2019 Optik 178 1218 [32] Li J, Pan Y B, Zeng Y P, Liu W B, Jiang B X and Guo J K 2013 Int. J. Refract Met. H 39 44 [33] Engelhard M H, Lyubinetsky A and Baer D R 2016 Surf. Sci. Spectra 23 83 [34] Du J, Wang Q K, Jiang G B, Xu C W, Zhao C J, Xiang Y J, Chen Y, Wen S C and Zhang H 2014 Sci. Rep. 4 6346 [35] Olivier M and Piché M 2019 Opt. Express 17 405 [36] Chen Z K, Zhou J and Zhao J Q 2023 IEEE J. Quantum Electron. 59 1600207 [37] Liu R M, Wang T S, Ma W Z, Zhao D S, Lin P, Wang F R and Zhao Y W 2019 IEEE Photonic Tech. Lett. 31 341 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|