Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110204    DOI: 10.1088/1674-1056/ad7e9e
GENERAL Prev   Next  

Asymptotic analysis on bright solitons and breather solutions of a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide

Xin Zhao(赵鑫)1,†, Zhong Du(杜仲)2, Li-Jian Zhou(周立俭)1, Rong-Xiang Liu(刘荣香)1, and Xu-Hu Wang(王绪虎)1
1 College of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China;
2 Department of Mathematics and Physics, and Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071003, China
Abstract  We study a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide. We obtain the Lax pair and N-fold Darboux transformation (DT) with N being a positive integer. Based on Lax pair obtained by us, we derive the infinitely-many conservation laws. We give the bright one-, two-, and N-soliton solutions, and the first-, second-, and Nth-order breather solutions based on the N-fold DT. We conclude that the velocities of the bright solitons are influenced by the distributed gain function, g(z), and variable coefficients in equation, h1(z), p1(z), r1(z), and s1(z) via the asymptotic analysis, where z represents the propagation variable or spatial coordinate. We also graphically observe that: the velocities of the first- and second-order breathers will be affected by h1(z), p1(z), r1(z), and s1(z), and the background wave depends on g(z).
Keywords:  optical fiber      planar waveguide      Darboux transformation      bright soliton      breather  
Received:  30 August 2024      Revised:  19 September 2024      Accepted manuscript online:  24 September 2024
PACS:  02.30.Jr (Partial differential equations)  
  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
Fund: Project supported by the the Fundamental Research Funds for the Central Universities (Grant No. 2023MS163).
Corresponding Authors:  Xin Zhao     E-mail:  zhaoxin@qut.edu.cn

Cite this article: 

Xin Zhao(赵鑫), Zhong Du(杜仲), Li-Jian Zhou(周立俭), Rong-Xiang Liu(刘荣香), and Xu-Hu Wang(王绪虎) Asymptotic analysis on bright solitons and breather solutions of a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide 2024 Chin. Phys. B 33 110204

[1] Marcuse D 2012 Principles of optical fiber measurements (Elsevier)
[2] Zhao X, Tian B, Zhang C R and Wang M 2022 Wave. Random Complex in press
[3] Mackenzie J I 2007 IEEE J. Sel. Top. Quant. 13 626
[4] Goban A, Hung C L, Hood J D, et al. 2015 Phys. Rev. Lett. 115 063601
[5] Degasperis A and Lombardo S 2013 Phys. Rev. E 88 052914
[6] Yi H H, Li X F, Zhang J L, Zhang X and Ma G L 2024 Chin. Phys. Lett. 33 100502
[7] Zhou Q, Zhong Y, Triki T, Sun Y Z, Xu S L, Liu W J and Biswas A 2022 Chin. Phys. Lett. 39 044202
[8] Yao Y L, Yi H H, Zhang X and Ma G L 2023 Chin. Phys. Lett. 40 100503
[9] Wang S B, Ma G L, Zhang X and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[10] Lan Z Z and Gao B 2017 Eur. Phys. J. Plus 132 512
[11] Hirota R 1973 J. Math. Phys. 14 805
[12] Ankiewicz A, Soto-Crespo J M and Akhmediev N 2010 Phys. Rev. E 81 046602
[13] Ding C C, Gao Y T, Deng G F and Wang D 2020 Chaos, Solitons Fract. 133 109580
[1] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[2] An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions
Jiao Wei(魏姣), Xianguo Geng(耿献国), and Xin Wang(王鑫). Chin. Phys. B, 2024, 33(7): 070202.
[3] Optimize Purcell filter design for reducing influence of fabrication variation
Xiao Cai(蔡晓), Yi-Biao Zhou(周翼彪), Wen-Long Yu(于文龙), Kang-Lin Xiong(熊康林), and Jia-Gui Feng(冯加贵). Chin. Phys. B, 2024, 33(6): 068501.
[4] Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers
Zhong-Zhou Lan(兰中周). Chin. Phys. B, 2024, 33(6): 060201.
[5] Localized wave solutions and interactions of the (2+1)-dimensional Hirota—Satsuma—Ito equation
Qiankun Gong(巩乾坤), Hui Wang(王惠), and Yunhu Wang(王云虎). Chin. Phys. B, 2024, 33(4): 040505.
[6] Parametric instability in the pure-quartic nonlinear Schrödinger equation
Yun-Hong Zhang(张云红) and Chong Liu(刘冲). Chin. Phys. B, 2024, 33(3): 030506.
[7] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[8] Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation
Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨). Chin. Phys. B, 2023, 32(5): 050503.
[9] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[10] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[11] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[12] From breather solutions to lump solutions: A construction method for the Zakharov equation
Feng Yuan(袁丰), Behzad Ghanbari, Yongshuai Zhang(张永帅), and Abdul Majid Wazwaz. Chin. Phys. B, 2023, 32(12): 120201.
[13] Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair
Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2023, 32(12): 120203.
[14] Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients
Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(12): 120401.
[15] Rational solutions of Painlevé-II equation as Gram determinant
Xiaoen Zhang(张晓恩) and Bing-Ying Lu(陆冰滢). Chin. Phys. B, 2023, 32(12): 120205.
No Suggested Reading articles found!