Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110204    DOI: 10.1088/1674-1056/ad7e9e
GENERAL Prev   Next  

Asymptotic analysis on bright solitons and breather solutions of a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide

Xin Zhao(赵鑫)1,†, Zhong Du(杜仲)2, Li-Jian Zhou(周立俭)1, Rong-Xiang Liu(刘荣香)1, and Xu-Hu Wang(王绪虎)1
1 College of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China;
2 Department of Mathematics and Physics, and Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071003, China
Abstract  We study a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide. We obtain the Lax pair and $N$-fold Darboux transformation (DT) with $N$ being a positive integer. Based on Lax pair obtained by us, we derive the infinitely-many conservation laws. We give the bright one-, two-, and $N$-soliton solutions, and the first-, second-, and $N$th-order breather solutions based on the $N$-fold DT. We conclude that the velocities of the bright solitons are influenced by the distributed gain function, $g(z)$, and variable coefficients in equation, $h_1(z)$, $p_1(z)$, $r_1(z)$, and $s_1(z)$ via the asymptotic analysis, where $ z $ represents the propagation variable or spatial coordinate. We also graphically observe that: the velocities of the first- and second-order breathers will be affected by $h_1(z)$, $p_1(z)$, $r_1(z)$, and $s_1(z)$, and the background wave depends on $g(z)$.
Keywords:  optical fiber      planar waveguide      Darboux transformation      bright soliton      breather  
Received:  30 August 2024      Revised:  19 September 2024      Accepted manuscript online:  24 September 2024
PACS:  02.30.Jr (Partial differential equations)  
  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
Fund: Project supported by the the Fundamental Research Funds for the Central Universities (Grant No. 2023MS163).
Corresponding Authors:  Xin Zhao     E-mail:  zhaoxin@qut.edu.cn

Cite this article: 

Xin Zhao(赵鑫), Zhong Du(杜仲), Li-Jian Zhou(周立俭), Rong-Xiang Liu(刘荣香), and Xu-Hu Wang(王绪虎) Asymptotic analysis on bright solitons and breather solutions of a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide 2024 Chin. Phys. B 33 110204

[1] Marcuse D 2012 Principles of optical fiber measurements (Elsevier)
[2] Zhao X, Tian B, Zhang C R and Wang M 2022 Wave. Random Complex in press
[3] Mackenzie J I 2007 IEEE J. Sel. Top. Quant. 13 626
[4] Goban A, Hung C L, Hood J D, et al. 2015 Phys. Rev. Lett. 115 063601
[5] Degasperis A and Lombardo S 2013 Phys. Rev. E 88 052914
[6] Yi H H, Li X F, Zhang J L, Zhang X and Ma G L 2024 Chin. Phys. Lett. 33 100502
[7] Zhou Q, Zhong Y, Triki T, Sun Y Z, Xu S L, Liu W J and Biswas A 2022 Chin. Phys. Lett. 39 044202
[8] Yao Y L, Yi H H, Zhang X and Ma G L 2023 Chin. Phys. Lett. 40 100503
[9] Wang S B, Ma G L, Zhang X and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[10] Lan Z Z and Gao B 2017 Eur. Phys. J. Plus 132 512
[11] Hirota R 1973 J. Math. Phys. 14 805
[12] Ankiewicz A, Soto-Crespo J M and Akhmediev N 2010 Phys. Rev. E 81 046602
[13] Ding C C, Gao Y T, Deng G F and Wang D 2020 Chaos, Solitons Fract. 133 109580
[1] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[2] An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions
Jiao Wei(魏姣), Xianguo Geng(耿献国), and Xin Wang(王鑫). Chin. Phys. B, 2024, 33(7): 070202.
[3] Optimize Purcell filter design for reducing influence of fabrication variation
Xiao Cai(蔡晓), Yi-Biao Zhou(周翼彪), Wen-Long Yu(于文龙), Kang-Lin Xiong(熊康林), and Jia-Gui Feng(冯加贵). Chin. Phys. B, 2024, 33(6): 068501.
[4] Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers
Zhong-Zhou Lan(兰中周). Chin. Phys. B, 2024, 33(6): 060201.
[5] Localized wave solutions and interactions of the (2+1)-dimensional Hirota—Satsuma—Ito equation
Qiankun Gong(巩乾坤), Hui Wang(王惠), and Yunhu Wang(王云虎). Chin. Phys. B, 2024, 33(4): 040505.
[6] Parametric instability in the pure-quartic nonlinear Schrödinger equation
Yun-Hong Zhang(张云红) and Chong Liu(刘冲). Chin. Phys. B, 2024, 33(3): 030506.
[7] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[8] Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation
Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨). Chin. Phys. B, 2023, 32(5): 050503.
[9] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[10] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[11] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[12] From breather solutions to lump solutions: A construction method for the Zakharov equation
Feng Yuan(袁丰), Behzad Ghanbari, Yongshuai Zhang(张永帅), and Abdul Majid Wazwaz. Chin. Phys. B, 2023, 32(12): 120201.
[13] Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair
Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2023, 32(12): 120203.
[14] Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients
Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(12): 120401.
[15] Rational solutions of Painlevé-II equation as Gram determinant
Xiaoen Zhang(张晓恩) and Bing-Ying Lu(陆冰滢). Chin. Phys. B, 2023, 32(12): 120205.
No Suggested Reading articles found!