Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070202    DOI: 10.1088/1674-1056/ad4633
GENERAL Prev   Next  

An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions

Jiao Wei(魏姣)1, Xianguo Geng(耿献国)1, and Xin Wang(王鑫)2,†
1 School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China;
2 School of Mathematics and Information Science, Zhongyuan University of Technology, Zhengzhou 450007, China
Abstract  Under investigation is an integrable generalization of the Fokas-Lenells equation, which can be derived from the negative power flow of a $2\times 2$ matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas-Lenells system is constructed. As a reduction, the $N$-fold Darboux transformation for the generalized Fokas-Lenells equation is obtained, from which the $N$-soliton solution in a compact Vandermonde-like determinant form is given. Particularly, the explicit one- and two-soliton solutions are presented and their dynamical behaviors are shown graphically.
Keywords:  Darboux transformation      soliton solutions      generalized Fokas-Lenells equation  
Received:  30 March 2024      Revised:  28 April 2024      Accepted manuscript online:  02 May 2024
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12326305, 11931017, and 12271490), the Excellent Youth Science Fund Project of Henan Province (Grant No. 242300421158), the Natural Science Foundation of Henan Province (Grant No. 232300420119), the Excellent Science and Technology Innovation Talent Support Program of ZUT (Grant No. K2023YXRC06), and Funding for the Enhancement Program of Advantageous Discipline Strength of ZUT (2022).
Corresponding Authors:  Xin Wang     E-mail:  wangxinlinzhou@163.com

Cite this article: 

Jiao Wei(魏姣), Xianguo Geng(耿献国), and Xin Wang(王鑫) An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions 2024 Chin. Phys. B 33 070202

[1] Hasegawa A and Kodama Y 1991 Phys. Rev. Lett. 66 161
[2] Ablowitz M J and Segur H 1981 Solitons and the inverse scattering transform (Philadelphia: SIAM)
[3] Akhmediev N, Eleonskii V M and Kulagin N E 1985 Sov. Phys. JETP 62 894
[4] Peregrine D H 1983 J. Aust. Math. Soc. Ser. B 25 16
[5] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[6] Kodama Y 1985 J. Stat. Phys. 39 597
[7] Kundu A 1984 J. Math. Phys. 25 3433
[8] Fokas A S 1995 Physica D 87 145
[9] Lenells J 2009 Stud. Appl. Math. 123 215
[10] Lenells J and Fokas A S 2009 Nonlinearity 22 11
[11] Lenells J and Fokas A S 2009 Inverse Probl. 25 115006
[12] Lenells J 2010 J. Nonlinear Sci. 20 709
[13] Matsuno Y 2012 J. Phys. A: Math. Theor. 45 235202
[14] Matsuno Y 2012 J. Phys. A: Math. Theor. 45 475202
[15] Liu S Z, Wang J and Zhang D J 2022 Stud. Appl. Math. 148 651
[16] Zhang Y J, Ma R Y and Feng B F 2024 Stud. Appl. Math. 152 734
[17] Geng X G and Lv Y Y 2012 Nonlinear Dyn. 69 1621
[18] He J S, Xu S W and Porsezian K 2012 J. Phys. Soc. Jpn. 81 124007
[19] Xu J and Fan E G 2015 J. Differ. Equations 259 1098
[20] Cheng Q Y and Fan E G 2023 J. Differ. Equations 366 320
[21] Kundu A 2010 J. Math. Phys. 51 022901
[22] Ling L M, Feng B F and Zhu Z N 2018 Nonlinear Anal. RWA 40 185
[23] Wang X, Wei J, Wang L and Zhang J L 2019 Nonlinear Dyn. 97 343
[24] Zhang Y, Yang J W, Chow K W and Wu C F 2017 Nonlinear Anal-Real. 33 237
[25] Re R S and Zhang Y 2023 Chaos Soliton Fract. 169 113233
[26] Chen Z T, Jia M, Hao X Z and Lou S Y 2024 Chin. Phys. B 33 030201
[27] Geng X G, Guo F Y and Zhai Y Y 2020 Chin. Phys. B 29 050201
[28] Geng X G and Zhai Y Y 2018 Chin. Phys. B 27 040201
[29] Xu S Q and Geng X G 2018 Chin. Phys. B 27 120202
[30] Wang X and Chen Y 2014 Chin. Phys. B 23 070203
[31] Wang X, Chen Y and Dong Z Z 2014 Chin. Phys. B 23 010201
[32] Hirota R 2004 The direct method in soliton theory (Cambridge: Cambridge University Press)
[33] Matveev V B and Salle M A 1991 Darboux transformations and solitons (Berlin: Springer)
[34] Gu C H, Hu H S and Zhou Z X 2005 Darboux transformations in integrable systems: theory and their applications to geometry (New York: Springer)
[35] Zhou Z X 2018 Stud. Appl. Math. 141 186
[36] Wang X and He J S 2023 Physica D 446 133639
[37] Wang X, Wang L, Wei J, Guo B W and Kang J F 2021 Proc. R. Soc. A 477 20210585
[38] Dickson R, Gesztesy F and Unterkofler K 1999 Rev. Math. Phys. 11 823
[39] Wei J, Geng X G and Zeng X 2019 Trans. Am. Math. Soc. 371 1483
[40] Prinari B, Ablowitz M J and Biondini G 2006 J. Math. Phys. 47 063508
[41] Geng X G, Wang K D and Chen M M 2021 Commun. Math. Phys. 382 585
[42] Zhang G Q and Yan Z Y 2020 J. Nonlinear Sci. 30 3089
[1] Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers
Zhong-Zhou Lan(兰中周). Chin. Phys. B, 2024, 33(6): 060201.
[2] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[3] Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation
Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨). Chin. Phys. B, 2023, 32(5): 050503.
[4] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[5] Riemann-Hilbert approach of the complex Sharma-Tasso-Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[6] Rational solutions of Painlevé-II equation as Gram determinant
Xiaoen Zhang(张晓恩) and Bing-Ying Lu(陆冰滢). Chin. Phys. B, 2023, 32(12): 120205.
[7] Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair
Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2023, 32(12): 120203.
[8] Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients
Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(12): 120401.
[9] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[10] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[11] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[12] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[13] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[14] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[15] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
No Suggested Reading articles found!