Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 124301    DOI: 10.1088/1674-1056/ad7e99
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis and measurement of vibration characteristics of a hollowing defect based on a laser self-mixing interferometer

Yu-Xin Chen(陈煜昕)1, Jin-Bo Chen(陈金波)1,†, Peng Cao(曹鹏)1, You-Guang Zhao(赵有光)2,‡, Jun Wang(王钧)1, Xu-Wei Teng(滕旭玮)3, and Chi Wang(王驰)1,§
1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China;
2 Beijing Institute of Space Electromechanics, Beijing 100094, China;
3 Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
Abstract  To solve the problems with the existing methods for detecting hollowing defects, such as inconvenient operation, low efficiency and intense subjectivity, and to improve the efficiency of the acoustic-optic fusion method for detecting hollowing defects, in this paper the vibration characteristics of hollowing defects are measured and analyzed using a laser self-mixing interferometer. The ceramic tile above the hollowing defect is equivalent to a thin circular plate with peripheral fixed support. According to Kirchhoff's classical circular plate theory and the circular plate displacement function based on the improved Fourier series, a theoretical model of a circular plate is established. By solving the characteristic equation, the theoretical modal parameters of hollowing defects are obtained. Subsequently, an experimental system based on a laser self-mixing interferometer is built, and modal experiments are carried out using the hammering method. The experimental modal parameters are obtained with a professional modal analysis software. Through comparative analysis between the theoretical and experimental modal parameters, the error of the natural frequency results is found to be tiny and the mode shapes are consistent. These results provide theoretical guidance for a practical non-destructive acoustic-optic fusion method for detecting hollowing defects.
Keywords:  hollowing defect      Kirchhoff's classical theory of circular plate      laser self-mixing interference      hammering method      modal  
Received:  12 June 2024      Revised:  11 September 2024      Accepted manuscript online:  24 September 2024
PACS:  43.40.+s (Structural acoustics and vibration)  
  06.30.Ft (Time and frequency)  
  42.87.-d (Optical testing techniques)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFF0722900), the Beijing Engineering Research Center of Aerial Intelligent Remote Sensing Equipments Fund (Grant No. AIRSE20233), and the National Natural Science Foundation of China (Grant No. 62175144).
Corresponding Authors:  Jin-Bo Chen, You-Guang Zhao, Chi Wang     E-mail:  jbchen@shu.edu.cn;zhaoyouguang@tongji.edu.cn;wangchi@shu.edu.cn

Cite this article: 

Yu-Xin Chen(陈煜昕), Jin-Bo Chen(陈金波), Peng Cao(曹鹏), You-Guang Zhao(赵有光), Jun Wang(王钧), Xu-Wei Teng(滕旭玮), and Chi Wang(王驰) Analysis and measurement of vibration characteristics of a hollowing defect based on a laser self-mixing interferometer 2024 Chin. Phys. B 33 124301

[1] Liao C T 2020 J. Asian. Archit. Build. 17 549
[2] Yiu C Y, Ho D C W and Lo S M 2007 Constr. Build. Mater. 21 594
[3] Zhu B and Zhang H 2014 Journal of China Three Gorges University (Natural Sciences) 36 83
[4] Jiang C J, Shang D F, Zhu Y H and Lu W S 2023 Construction Technology 52 128
[5] Jiang R 2018 The Research to the Common Quality Issue of Curtain Wall of Buildings and Its Countermeasures (M.D. Dissertation) (Nanjing: Southeast University) (in Chinese)
[6] Shokouhi P, Wolf J and Wiggenhauser H 2013 J. Bridge. Eng. 19 04013005
[7] Shah A A, Ribakov Y and Zhang C 2013 Mater. Design. 50 905
[8] Datcu S, Ibos L, Candau Y and Matteï S 2005 Infrared. Phys. Techn. 46 451
[9] Lucchi E 2018 Renew. Sust. Energ. 82 3077
[10] Lu Y C, Lin D M, Zhai Z Q and Wang Z S 2022 Energ. Buildings 274 112421
[11] Wang P J, Xiao J Z, Duan Z H and Li C L 2022 J. Archit. Civil. Eng. 39 24
[12] Mccann D M and Forde M C 2001 NDT & E. Int. 34 71
[13] Zhang X Q, Liu W B, Kong G and Gao J W 2017 Housing Science 37 45
[14] Sabatier J M and Xiang N 2001 IEEE T. Geosci. Remote. 39 1146
[15] Xiang N and Sabatier J M 2003 J. Acoust. Soc. Am. 113 1333
[16] Sabatier J M and Xiang N 2000 Proceedings of Spie the International Society for Optical Engineering, August 22, 2000, Orlando, FL, United States, p. 4038
[17] Korman M S and Sabatier J M 2004 J. Acoust. Soc. Am. 116 3354
[18] Donskoy D 2004 J. Acoust. Soc. Am. 111 2705
[19] Donskoy D, Reznik A, Zagrai A and Ekimov A 2005 J. Acoust. Soc. Am. 117 690
[20] Donskoy D, Zagrai A, Fenneman D, Tsionskiy M and Sedunov N 2006 Conference on Detection and Remediation Technologies for Mines and Minelike Targets, May 17, Orlando, FL, United States, p. 6217
[21] Zabolotskaya E A, Ilinskii Y A and Hamilton M F 2009 J. Acoust. Soc. Am. 125 2035
[22] Zagrai A, Donskoy D and Ekimov A 2004 Proceedings of Spie the International Society for Optical Engineering, September 21, 2004, Orlando, FL, United States, p. 5415
[23] Zagrai A, Donskoy D and Ekimov A 2005 J. Acoust. Soc. Am. 118 3619
[24] Muir T G, costley R D and Sabatier J M 2014 J. Acoust. Soc. Am. 135 49
[25] Copenhaver B J, Gorhum J D, Slack C M, Barlett M L and Hamilton M F 2013 J. Acoust. Soc. Am. 134 4129
[26] Wang C, Liu Z G, Li X F, Sun F and Zhang G X 2008 Acta Acoustica 33 354
[27] Wang C, Li X F, Fu J, Li H Y, Liang G Q and Zhang G X 2008 Optics and Precision Engineering 16 1716
[28] Mao X, Li G Q, Wang C and Ding W 2012 Prz Elektrotechnic 88 1
[29] Wu Z Q, Ma H,Wang C, Li J H and Zhu J 2019 Applied Sciences 9 744
[30] Li J H, Ma H, Zhang X Q, Luo X Y and Wang C 2021 Chin. Opt. 14 487
[31] Zhang X Q, Wang C, Li J H, Luo X Y, Yu Y J, Xu Y W and Luan X Q 2021 Opt. Eng. 60 084102
[32] Wang C, Luo X Y, Wang C, Jiang H J and Luo C P 2022 J. Jilin Univ. (Eng. Tech. Ed.) 52 3006
[33] Michele N and Donati S 2003 IEEE T. Instrum. Meas. 52 1765
[34] Bes C, Plantier G and Bosch T 2006 IEEE T. Instrum. Meas. 55 1101
[35] Giuliani G, Pietra S B and Donati S 2003 Meas. Sci. Technol. 14 24
[36] Peter J D G, Gregg M G and Steven H M 1988 Appl. Opt. 27 4475
[37] Peter J D G 1990 J. Mod. Opt. 37 1199
[38] Bosch T, Servagent N, Chellali R and Lescure M1998 IEEE T. Instrum. Meas. 47 13263
[39] Usman Z, Francis B, Bosch T and Aleksandar D R 2010 IEEE Photonic. Tech. Lett. 22 410
[40] Wang X L, Lv L P, Zhu D S, Chen H Q and HuangWC 2022 Photonics 9 430
[41] Xie ZW, Li J, Guo D M, XiaW, Yan H T and Wang M2024 Opt. Laser Technol. 172 110496
[42] Zhen H, Xu H Z, Wang X H, Tang Y, Shen L H and Li D Y 2024 Measurement 229 114407
[1] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[4] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[5] Sound propagation in inhomogeneous waveguides with sound-speed profiles using the multimodal admittance method
Qi Li(李琪), Juan Liu(刘娟), Wei Guo(郭威). Chin. Phys. B, 2020, 29(1): 014303.
[6] Radiation from finite cylindrical shell with irregular-shaped acoustic enclosure
De-Sen Yang(杨德森), Rui Zhang(张睿), Sheng-Guo Shi(时胜国). Chin. Phys. B, 2018, 27(10): 104301.
[7] Switchable multi-wavelength fiber laser based on modal interference
Ma Lin (马林), Sun Jiang (孙将), Qi Yan-Hui (齐艳辉), Kang Ze-Xin (康泽新), Jian Shui-Sheng (简水生). Chin. Phys. B, 2015, 24(8): 084201.
[8] All-fiber modal interferometer based on an up-taper-core-offset structure for curvature sensing
Ma Lin (马林), Qi Yan-Hui (齐艳辉), Sun Jiang (孙将), Kang Ze-Xin (康泽新), Jian Shui-Sheng (简水生). Chin. Phys. B, 2015, 24(4): 044202.
[9] Effect of structural parameters of Gaussian repaired pit on light intensity distribution inside KH2PO4 crystal
Xiao Yong (肖勇), Chen Ming-Jun (陈明君), Cheng Jian (程健), Liao Wei (廖威), Wang Hai-Jun (王海军), Li Ming-Quan (李明全). Chin. Phys. B, 2014, 23(8): 087702.
[10] The engineering of doxorubicin-loaded liposome-quantum dot hybrids for cancer theranostics
Bowen Tian (田博文), Wafa' T. Al-Jamal, Kostas Kostarelos. Chin. Phys. B, 2014, 23(8): 087805.
[11] The mixed-spins 1/2 and 3/2 Blume–Capel model with a random crystal field
Erhan Albayrak . Chin. Phys. B, 2012, 21(6): 067501.
[12] Mechanism of micro-waviness induced KH2PO4 crystal laser damage and the corresponding vibration source
Li Ming-Quan(李明全), Chen Ming-Jun(陈明君), An chen-Hui(安晨辉), Zhou Lian(周炼), Cheng Jian(程健), Xiao Yong(肖勇), and Jiang Wei(姜伟) . Chin. Phys. B, 2012, 21(5): 050301.
[13] Study of the near-field modulation property of microwaviness on a KH2PO4 crystal surface
Chen Ming-Jun(陈明君), Jiang Wei(姜伟), Li Ming-Quan(李明全), and Chen Kuan-Neng(陈宽能). Chin. Phys. B, 2010, 19(6): 064203.
[14] High precision Zernike modal gray map reconstruction for liquid crystal corrector
Liu Chao(刘超), Mu Quan-Quan(穆全全), Hu Li-Fa(胡立发), Cao Zhao-Liang(曹召良), and Xuan Li(宣丽). Chin. Phys. B, 2010, 19(6): 064214.
[15] Study on tapered crossed subwavelength gratings by Fourier modal method
Chen Xi(陈熙), Zhong Yuan(钟源), Wang Qing(王青), Zhang Ye-Jin(张冶金), and Chen Liang-Hui(陈良惠). Chin. Phys. B, 2010, 19(10): 104101.
No Suggested Reading articles found!