Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060201    DOI: 10.1088/1674-1056/ad39d7
GENERAL   Next  

Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers

Zhong-Zhou Lan(兰中周)†
School of Computer Information Management, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
Abstract  Under investigation in this paper is a complex modified Korteweg-de Vries (KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
Keywords:  complex modified KdV equation      multi-soliton solutions      breather-like      bound-state  
Received:  16 March 2024      Revised:  28 March 2024      Accepted manuscript online:  03 April 2024
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  04.20.Jb (Exact solutions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12161061), the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036), the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022, Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422), High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426), and the Talent Development Fund of Inner Mongolia Autonomous Region, China.
Corresponding Authors:  Zhong-Zhou Lan     E-mail:  zhongzhou-lan@buaa.edu.cn

Cite this article: 

Zhong-Zhou Lan(兰中周) Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers 2024 Chin. Phys. B 33 060201

[1] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[2] Liu C, Chen S C, Yao X K and Akhmediev N 2022 Chin. Phys. Lett. 39 094201
[3] He J T, Fang P P and Lin J 2022 Chin. Phys. Lett. 39 020301
[4] Ding C C, Zhou Q, Xu S L, Triki H and Mirzazadeh M and Liu W J 2023 Chin. Phys. Lett. 40 040501
[5] Yan L J, Liu Y J and Hu X B 2024 Chin. Phys. Lett. 41 040201
[6] Wazwaz A M 2023 Chin. Phys. Lett. 40 120501
[7] Liu X M, Zhang Z Y and Liu W J 2023 Chin. Phys. Lett. 40 070501
[8] Ma W X 2022 Chin. Phys. Lett. 39 100201
[9] Lou S Y, Jia M and Hao X Z 2023 Chin. Phys. Lett. 40 020201
[10] Lamb K G, Xiao W and Kurkin A 2007 Phys. Rev. E 75 046306
[11] Zhu S Y, Kong D X and Lou S Y 2023 Chin. Phys. Lett. 40 080201
[12] Yuan F and Ghanbari B 2023 Chin. Phys. B 32 040201
[13] Chen M and Wang Z 2023 Chin. Phys. B 32 090504
[14] Kruglov V I and Triki H 2023 Chin. Phys. Lett. 40 090503
[15] Helfrich K R and Melville W K 2006 Annu. Rev. Fluid Mech. 38 395
[16] Sasa N and Satsuma J 1991 J. Phys. Soc. Jpn. 60 409
[17] Lamb K G, Yan L 1996 J. Phys. Ocean. 26 2712
[18] Grimshaw R, Pelinovsky E and Poloukhina O 2002 Nonlinear Proc. Geophys. 9 221
[19] Modak1 S, Singh A P and Panigrahi P K 2016 Eur. Phys. J. B 89 149
[20] Chen J B and Pelinovsky D E 2019 J. Nonlinear Sci. 29 2797
[21] Chowdury A, Ankiewicz A and Akhmediev N 2016 Eur. Phys. J. D 70 104
[22] Liu C, Ren Y, Yang Z Y and Yang W L 2017 Chaos 27 083120
[23] Liu C, Chen S C and Akhmediev N 2024 Phys. Rev. Lett. 132 027201
[24] Zhaqilao and Li Z B 2008 Chin. Phys. Lett. 25 8
[25] Zhaqilao 2013 Phys. Scr. 87 065401
[26] Hirota R 1973 J. Math. Phys. 14 805
[1] Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair
Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2023, 32(12): 120203.
[2] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[3] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[4] Transcription’s bubble under the influence of long-range interactions and helicoidal coupling
Mirabeau Saha, Timoléon C. Kofané. Chin. Phys. B, 2013, 22(12): 129402.
[5] Bound states of the Klein-Gordon equation for ring-shaped Kratzer-type potential
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2004, 13(5): 575-578.
[6] Bound states of two-dimensional relativistic harmonic oscillators
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2004, 13(3): 283-286.
[7] Bound states of Klein-Gordon equation for ring-shaped harmonic oscillator scalar and vector potentials
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2003, 12(2): 136-139.
[8] Bound states of the Klein-Gordon and Dirac equations for potential $V(r)=Ar^{-2}-Br^{-1}$
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2003, 12(10): 1054-1057.
No Suggested Reading articles found!