Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 010201    DOI: 10.1088/1674-1056/ad8ec6
GENERAL  

Darboux transformation, positon solution, and breather solution of the third-order flow Gerdjikov-Ivanov equation

Shuzhi Liu(刘树芝)1, Ning-Yi Li(李宁逸)3, Xiaona Dong(董晓娜)2, and Maohua Li(李茂华)2,†
1 School of Statistics and Data Science, Ningbo University of Technology, Ningbo 315211, China;
2 School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China;
3 College of Wealth and Management, Ningbo University of Finance and Economics, Ningbo 315175, China
Abstract  The third-order flow Gerdjikov-Ivanov (TOFGI) equation is studied, and the Darboux transformation (DT) is used to obtain the determinant expression of the solution of this equation. On this basis, the soliton solution, rational solution, positon solution, and breather solution of the TOFGI equation are obtained by taking zero seed solution and non-zero seed solution. The exact solutions and dynamic properties of the Gerdjikov-Ivanov (GI) equation and the TOFGI equation are compared in detail under the same conditions, and it is found that there are some differences in the velocities and trajectories of the solutions of the two equations.
Keywords:  third-order flow Gerdjikov-Ivanov equation      solitons      positons      breathers  
Received:  30 August 2024      Revised:  12 October 2024      Accepted manuscript online:  05 November 2024
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  04.20.Jb (Exact solutions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12201329), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY24A010002), and the Natural Science Foundation of Ningbo (Grant No. 2023J126).
Corresponding Authors:  Maohua Li     E-mail:  limaohua@nbu.edu.cn

Cite this article: 

Shuzhi Liu(刘树芝), Ning-Yi Li(李宁逸), Xiaona Dong(董晓娜), and Maohua Li(李茂华) Darboux transformation, positon solution, and breather solution of the third-order flow Gerdjikov-Ivanov equation 2025 Chin. Phys. B 34 010201

[1] Russell J S 1844 Report on Waves. Report of the 14th Meeting of the British Association for the Advancement of Science (London)
[2] Korteweg D J and de Vries G 1895 Philos. Mag. 39 422
[3] Gardner C S and Morikawa G K 1960 Similarity in the asymptotic behavior of collision-free hydromagnetic waves and water waves (New York University)
[4] Kruskal M D 1965 Proceedings of the IBM Scientific Computing Symposium on Large-Scale Problems in Physics (White Plains, New York)
[5] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[6] Hirota R 1973 J. Math. Phys. 14 805
[7] Kundu A 1984 J. Math. Phys. 25 3433
[8] Wang X, Yang B, Chen Y and Yang Y Q 2014 Phys. Scr. 89 095210
[9] Kruglov V I, Peacock A C and Harvey J D 2003 Phys. Rev. Lett. 90 113902
[10] Wang L H, Porsezian K and He J S 2013 Phys. Rev. E 87 053202
[11] Xu S W, He J S and Wang L H 2011 J. Phys. A-Math. Theor. 44 305203
[12] Zhang Y S, Guo L J, Xu S W, Wu Z W and He J S 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1706
[13] Zhang H Q, Liu R and Chen F 2023 Nonlinear Dyn. 111 645
[14] Xiang Y J, Dai X Y, Wen S C, Guo J and Fan D Y 2011 Phys. Rev. A 84 033815
[15] Kaup D J and Newell A C 1978 J. Math. Phys. 19 798
[16] Chen H H, Lee Y C and Liu C S 1979 Phys. Scr. 20 490
[17] Gerdjikov V S and Ivanov M I 1983 Bulg. J. Phys. 10 130
[18] Mjølhus E 1976 J. Plasma Phys. 16 321
[19] Mjølhus E 1989 Phys. Scr. 40 227
[20] Agrawal G P 2000 Nonlinear fiber optics. Nonlinear Science at the Dawn of the 21st Century 542 195
[21] Zhu J Y and Chen Y 2024 Acta Math. Appl. Sin-E. 40 358
[22] Li Y S, Gu X S and Zou M R 1987 Acta Math. Sin. (New Series) 3 143
[23] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[24] Gu C H, Hu H S and Zhou Z X 2006 Darboux Trasformations in Integrable Systems (Dortrecht: Springer)
[25] He J S, Zhang L, Cheng Y and Li Y S 2006 Sci. China Ser. A Math. 49 1867
[26] Liu J Z, Yan X X, Jin M and Xin X P 2023 Chin. Phys. B 32 120401
[27] Wei J, Geng X G and Wang X 2024 Chin. Phys. B 33 070202
[28] Matveev V B 1992 Phys. Lett. A 166 205
[29] Maisch H and Stahlhofen A A 1995 Phys. Scr. 52 228
[30] Hu H C and Liu Y 2008 Phys. Lett. A 372 5795
[31] Song W J, Xu S W, Li M H and He J S 2019 Nonlinear Dyn. 97 2135
[32] Yuan F and Ghanbari B 2023 Chin. Phys. B 32 075208
[33] Wadati M 1973 J. Phys. Soc. Jpn. 34 1289
[34] Xu S W and He J S 2012 J. Math. Phys. 53 063507
[35] Lin H A, He J S, Wang L H and Mihalache D 2020 Nonlinear Dyn. 100 2839
[36] Yang X, Zhang Z and Li B 2020 Chin. Phys. B 29 100501
[1] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[2] Effective regulation of the interaction process among three optical solitons
Houhui Yi(伊厚会), Xiaofeng Li(李晓凤), Junling Zhang(张俊玲), Xin Zhang(张鑫), and Guoli Ma(马国利). Chin. Phys. B, 2024, 33(10): 100502.
[3] Influence of the initial parameters on soliton interaction in nonlinear optical systems
Xinyi Zhang(张昕仪) and Ye Wu(吴晔). Chin. Phys. B, 2023, 32(7): 070505.
[4] Adjusting amplitude of the stored optical solitons by inter-dot tunneling coupling in triple quantum dot molecules
Yin Wang(王胤), Si-Jie Zhou(周驷杰), Yong-He Deng(邓永和), and Qiao Chen(陈桥). Chin. Phys. B, 2023, 32(5): 054203.
[5] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[6] Nondegenerate solitons of the (2+1)-dimensional coupled nonlinear Schrödinger equations with variable coefficients in nonlinear optical fibers
Wei Yang(杨薇), Xueping Cheng(程雪苹), Guiming Jin(金桂鸣), and Jianan Wang(王佳楠). Chin. Phys. B, 2023, 32(12): 120202.
[7] High-order effect on the transmission of two optical solitons
Houhui Yi(伊厚会), Yanli Yao(姚延立), Xin Zhang(张鑫), and Guoli Ma(马国利). Chin. Phys. B, 2023, 32(10): 100509.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[10] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[11] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[12] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[13] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[14] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[15] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
No Suggested Reading articles found!