Special Issue:
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
|
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS |
Prev
Next
|
|
|
Physics through the microscope |
Stephen J. Pennycook1,2,†, Ryo Ishikawa3, Haijun Wu(武海军)4, Xiaoxu Zhao(赵晓续)5, Changjian Li(黎长建)6, Duane Loh7,8, Jiadong Dan7,8, and Wu Zhou(周武)1 |
1 School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China; 2 Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA; 3 Institute of Engineering Innovation, University of Tokyo, Tokyo 113-8656, Japan; 4 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China; 5 School of Materials Science and Engineering, Peking University, Beijing 100871, China; 6 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 7 Department of Physics, National University of Singapore, Singapore 117551, Singapore; 8 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore |
|
|
Abstract The electron microscope provides numerous insights into physics, from demonstrations of fundamental quantum mechanical principles to the physics of imaging and materials. It reveals the atomic and electronic structure of key regions such as defects and interfaces. We can learn the underlying physics governing properties, and gain insight into how to synthesize new materials with improved properties. Some recent advances and possible future directions are discussed.
|
Received: 27 July 2024
Revised: 09 September 2024
Accepted manuscript online: 14 September 2024
|
PACS:
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
87.64.Ee
|
(Electron microscopy)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
47.54.Jk
|
(Materials science applications)
|
|
Corresponding Authors:
Stephen J. Pennycook
E-mail: stevepennycook@gmail.com
|
Cite this article:
Stephen J. Pennycook, Ryo Ishikawa, Haijun Wu(武海军), Xiaoxu Zhao(赵晓续), Changjian Li(黎长建), Duane Loh, Jiadong Dan, and Wu Zhou(周武) Physics through the microscope 2024 Chin. Phys. B 33 116801
|
[1] Batelaan H and Tonomura A 2009 Phys. Today 62 38 [2] Merli P G, Missiroli G F and Pozzi G 1976 Am. J. Phys. 44 306 [3] Tonomura A, Endo J, Matsuda T, Kawasaki T and Ezawa H 1989 Am. J. Phys. 57 117 [4] Rayleigh L 1896 Phil. Mag. 42 167 [5] Pennycook S J 2012 Ultramicroscopy 123 28 [6] Pennycook S J 2012 MRS Bulletin 37 943 [7] Pennycook S J 2017 Ultramicroscopy 180 22 [8] Cowley J 1969 Appl. Phys. Lett. 15 58 [9] Zeitler E and Thomson M 1970 Optik 31 258 [10] Glauber R and Schomaker V 1953 Phys. Rev. 89 667 [11] Oxley M P, Lupini A R and Pennycook S J 2016 Rep. Prog. Phys. 80 026101 [12] Peng Y, Oxley M P, Lupini A R, Chisholm M F and Pennycook S J 2008 Microsc. Microanal. 14 36 [13] Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, Yamamoto T and Ikuhara Y 2009 Appl. Phys. Lett. 95 191913 [14] Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y and Ikuhara Y 2010 Ultramicroscopy 110 903 [15] Knoll M and Ruska E 1932 Zeit. Physik 78 318 [16] von Ardenne M 1938 Zeit. Physik 109 553 [17] Crewe A V 1966 Science 154 729 [18] Crewe A V, Eggenberger D N, Wall J and Welter L M 1968 Rev. Sci. Instrum. 39 576 [19] Pennycook S J 2011 Scanning Transmission Electron Microscopy (Pennycook S J & Nellist P D, Ed.) pp. 1-90 (Springer New York) [20] Cowley J M 1984 Bull. Mater. Sci. 6 477 [21] Pennycook S J and Jesson D E 1990 Phys. Rev. Lett. 64 938 [22] Pennycook S J, Browning N D, McGibbon M M, McGibbon A J, Jesson D E and Chisholm M F 1996 Phil. Trans. Roy. Soc. A 354 2619 [23] Yan Y and Pennycook S J 2000 Nature 403 266 [24] McGibbon A J, Pennycook S J and Angelo J 1995 Science 269 519 [25] Nellist P D and Pennycook S J 1996 Science 274 413 [26] Yan Y, Chisholm M F, Duscher G, Maiti A, Pennycook S J and Pantelides S T 1998 Phys. Rev. Lett. 81 3675 [27] Browning N D, Chisholm M F and Pennycook S J 1993 Nature 366 143 [28] Batson P E, Dellby N and Krivanek O L 2002 Nature 418 617 [29] Nellist P D, Chisholm M F, Dellby N, Krivanek O L, Murfitt M F, Szilagyi Z S, Lupini A R, Borisevich A, Sides W H and Pennycook S J 2004 Science 305 1741 [30] Varela M, Findlay S D, Lupini A R, Christen H M, Borisevich A Y, Dellby N, Krivanek O L, Nellist P D, Oxley M P, Allen L J and Pennycook S J 2004 Phys. Rev. Lett. 92 095502 [31] Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C, Szilagyi Z S, Oxley M P, Pantelides S T and Pennycook S J 2010 Nature 464 571 [32] Zhou W, Kapetanakis M D, Prange M P, Pantelides S T, Pennycook S J and Idrobo J C 2012 Phys. Rev. Lett. 109 206803 [33] Ishikawa R, Mishra R, Lupini A R, Findlay S D, Taniguchi T, Pantelides S T and Pennycook S J 2014 Phys. Rev. Lett. 113 155501 [34] Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Haigh S J, Oxley M P, Lupini A R, Al-Jassim M, Pennycook S J and Yan Y 2014 Phys. Rev. Lett. 112 156103 [35] Wu H, Zhang Y, Wu J, Wang J and Pennycook S J 2019 Adv. Funct. Mater. 29 1902911 [36] Liu H, Wu H, Ong K P, Yang T, Yang P, Das P K, Chi X, Zhang Y, Diao C, Wong W K A, Chew E P, Chen Y F, Tan C K I, Rusydi A, Breese M B H, Singh D J, Chen L Q, Pennycook S J and Yao K 2020 Science 369 292 [37] Waqar M, Wu H, Ong K P, Liu H, Li C, Yang P, Zang W, Liew W H, Diao C, Xi S, Singh D J, He Q, Yao K, Pennycook S J and Wang J 2022 Nat. Commun. 13 3922 [38] Zhao X, Ning S, Fu W, Pennycook S J and Loh K P 2018 Adv. Mater. 30 1802397 [39] Zhao X, Song P, Wang C, Riis-Jensen A C, Fu W, Deng Y, Wan D, Kang L, Ning S, Dan J, Venkatesan T, Liu Z, Zhou W, Thygesen K S, Luo X, Pennycook S J and Loh K P 2020 Nature 581 171 [40] Tian H, Ma Y, Li Z, Cheng M, Ning S, Han E, Xu M, Zhang P F, Zhao K, Li R, Zou Y, Liao P, Yu S, Li X, Wang J, Liu S, Li Y, Huang X, Yao Z, Ding D, Guo J, Huang Y, Lu J, Han Y, Wang Z, Cheng Z G, Liu J, Xu Z, Liu K, Gao P, Jiang Y, Lin L, Zhao X, Wang L, Bai X, Fu W, Wang J Y, Li M, Lei T, Zhang Y, Hou Y, Pei J, Pennycook S J, Wang E, Chen J, Zhou W and Liu L 2023 Nature 615 56 [41] Zhao X, Dan J, Chen J, Ding Z, Zhou W, Loh K P and Pennycook S J 2018 Adv. Mater. 30 1707281 [42] Shibata N, Findlay S D, Kohno Y, Sawada H, Kondo Y and Ikuhara Y 2012 Nat. Phys. 8 611 [43] Shibata N, Seki T, Sanchez-Santolino G, Findlay S D, Kohno Y, Matsumoto T, Ishikawa R and Ikuhara Y 2017 Nat. Commun. 8 15631 [44] Yang H, Rutte R N, Jones L, Simson M, Sagawa R, Ryll H, Huth M, Pennycook T J, Green M L H, Soltau H, Kondo Y, Davis B G and Nellist P D 2016 Nat. Commun. 7 12532 [45] Pennycook T J, Lupini A R, Yang H, Murfitt M F, Jones L and Nellist P D 2015 Ultramicroscopy 151 160 [46] Yang H, Pennycook T J and Nellist P D 2015 Ultramicroscopy 151 232 [47] Gao C, Hofer C, Jannis D, Béché A, Verbeeck J and Pennycook T J 2022 Appl. Phys. Lett. 121 081906 [48] Jannis D, Hofer C, Gao C, Xie X, Béché A, Pennycook T J and Ver-beeck J 2022 Ultramicroscopy 233 113423 [49] Jiang Y, Chen Z, Han Y, Deb P, Gao H, Xie S, Purohit P, Tate M W, Park J, Gruner S M, Elser V and Muller D A 2018 Nature 559 343 [50] Sha H, Cui J and Yu R 2022 Sci. Adv. 8 eabn2275 [51] Sha H, Ma Y, Cao G, Cui J, Yang W, Li Q and Yu R 2023 Nat. Commun. 14 162 [52] Ishikawa R, Pennycook S J, Lupini A R, Findlay S D, Shibata N and Ikuhara Y 2016 Appl. Phys. Lett. 109 163102 [53] Chung J Y, Li Z, Goodman S A, So J, Syaranamual G J, Mishra T P, Fitzgerald E A, Bosman M, Lee K, Pennycook S J and Gradečak S 2021 ACS Photon. 8 2853 [54] Li M, Chen P, Zhang Y, Zhang Y, Liu Z, Tang C, Chung J Y, Gu M, Li J, Huang Z, Chow G M, Li C and Pennycook S J 2023 Small 19 2203201 [55] Ishikawa R, Lupini A R, Hinuma Y and Pennycook S J 2015 Ultramicroscopy 151 122 [56] He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao Y J, Dong J F, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song J M, Zhu Y, Xu W, Niu C, Wang G, Liu C, Ohta M, Pennycook S J, He J, Li J F and Zhao L D 2019 Science 365 1418 [57] Jiang B, Yu Y, Cui J, Liu X, Xie L, Liao J, Zhang Q, Huang Y, Ning S, Jia B, Zhu B, Bai S, Chen L, Pennycook S J and He J 2021 Science 371 830 [58] Idrobo J C, Lupini A R, Feng T, Unocic R R, Walden F S, Gardiner D S, Lovejoy T C, Dellby N, Pantelides S T and Krivanek O L 2018 Phys. Rev. Lett. 120 095901 [59] Yu Y, Xie L, Pennycook S J, Bosman M and He J 2022 Sci. Adv. 8 eadd7690 [60] Hudak B M, Song J, Sims H, Troparevsky M C, Humble T S, Pantelides S T, Snijders P C and Lupini A R 2018 ACS Nano 12 5873 [61] Dan J, Zhao X, Ning S, Lu J, Loh K P, He Q, Loh N D and Pennycook S J 2022 Sci. Adv. 8 eabk1005 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|