Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 116802    DOI: 10.1088/1674-1056/ad7afc
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM

Wanbo Qu(曲万博)1, Zhihao Zhao(赵志昊)1, Yuxuan Yang(杨宇轩)1, Yang Zhang(张杨)1,2,3,†, Shengwu Guo(郭生武)1, Fei Li(李飞)1,2, Xiangdong Ding(丁向东)1, Jun Sun(孙军)1, and Haijun Wu(武海军)1,‡
1 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China;
2 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, and School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
3 Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope (AC-STEM) makes it an advanced and practical characterization technique for all materials. Owing to the prosperous advancement in computational technology, specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process. Utilizing advanced image processing algorithms promotes the rectification of image distortions, concurrently elevating the overall image quality to superior standards. Extracting high-resolution, pixel-level discrete information and converting it into atomic-scale, followed by performing statistical calculations on the physical matters of interest through quantitative analysis, represent an effective strategy to maximize the value of electron microscope images. The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers. This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives: contrast, lattice and strain, as well as atomic displacements and polarization. It further elaborates on practical applications of these methods in electronic functional materials, notably in piezoelectrics/ferroelectrics and thermoelectrics. It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research, elucidating the structure-property correlations in high-performance systems, and guiding synthesis strategies.
Keywords:  AC-STEM      quantitative analysis      polarization      electronic functional materials  
Received:  09 July 2024      Revised:  27 August 2024      Accepted manuscript online:  14 September 2024
PACS:  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  06.60.-c (Laboratory procedures)  
  77.22.Ej (Polarization and depolarization)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the financial support from the National Key R&D Program of China (Grant No. 2021YFB3201100), the National Natural Science Foundation of China (Grant No. 52172128), and the Top Young Talents Programme of Xi'an Jiaotong University.
Corresponding Authors:  Yang Zhang, Haijun Wu     E-mail:  zhangyang2020@xjtu.edu.cn;wuhaijunnavy@xjtu.edu.cn

Cite this article: 

Wanbo Qu(曲万博), Zhihao Zhao(赵志昊), Yuxuan Yang(杨宇轩), Yang Zhang(张杨), Shengwu Guo(郭生武), Fei Li(李飞), Xiangdong Ding(丁向东), Jun Sun(孙军), and Haijun Wu(武海军) Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM 2024 Chin. Phys. B 33 116802

[1] Crewe A V, Wall J and Langmore J 1970 Science 168 1338
[2] Pennycook S J and Jesson D E 1991 Ultramicrosc 37 14
[3] Jones L, Yang H, Pennycook T J, Marshall M S J, Van Aert S, Browning N D, Castell M R and Nellist P D 2015 Adv. Struct. Chem. Imaging. 1 8
[4] Galindo P L, Kret S, Sanchez A M, Laval J Y, Yañez A, Pizarro J, Guerrero E, Ben T and Molina S I 2007 Ultramicrosc 107 1186
[5] Bárcena-González G, Guerrero-Lebrero M P, Guerrero E, Yañez A, Fernández-Reyes D, González D and Galindo P L 2017 Ultramicrosc 182 283
[6] Jones L and Nellist P D 2013 Microsc. Microanal. 19 1050
[7] Jones L, Varambhia A, Beanland R, Kepaptsoglou D, Griffiths I, Ishizuka A, Azough F, Freer R, Ishizuka K, Cherns D, Ramasse Q M, Lozano-Perez S and Nellist P D 2018 Microscopy 67 98
[8] https://www.hremresearch.com/Eng/download/documents/PPA%20Manual%20v5.0.pdf
[9] https://www.hremresearch.com/Eng/download/documents/SmartAlign%20Manual.pdf
[10] He W K, Wang D Y, Wu H J, et al. 2019 Science 365 1418
[11] Qin B C, Wang D Y, He W K, Zhang Y, Wu H J, Pennycook S J and Zhao L D 2019 J. Am. Chem. Soc. 141 1141
[12] Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R and Zhang S J 2019 Science 364 264
[13] Qin H X, Qu W B, Zhang Y, Zhang Y S, Liu Z H, Zhang Q, Wu H J, Cai W and Sui J H 2022 Adv. Sci. 9 2200432
[14] Jia C L, Lentzen M and Urban K 2003 Science 299 870
[15] Jia C L, Lentzen M and Urban K 2004 Microsc. Microanal. 10 174
[16] Lazić I, Bosch E G T and Lazar S 2016 Ultramicrosc 160 265
[17] Lazić I and Bosch E G T 2017 Adv. Imaging Electron Phys. 199 75
[18] Jia C L and Urban K 2004 Science 303 2001
[19] Kumar A, Baker J N, Bowes P C, Cabral M J, Zhang S J, Dickey E C, Irving D L and LeBeau J M 2021 Nat. Mater. 20 62
[20] Wang D Y, Huang Z W, Zhang Y, Hao L J, Wang G T, Deng S H, Wang H L, Chen J, He L H, Xiao B, Xu Y D, Pennycook S J, Wu H J and Zhao L D 2020 Sci. China Mater. 63 1759
[21] Yin J, Shi X M, Tao H, Tan Z, Lv X, Ding X D, Sun J, Zhang Y, Zhang X M, Yao K, Zhu J G, Huang H B, Wu H J, Zhang S J and Wu J G 2022 Nat. Commun. 13 6333
[22] Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D and Pennycook S J 2015 Science 348 547
[23] Xiao Y, Liu W, Zhang Y, Wang D Y, Shi H N, Wang S N, Jin Y, Qu W B, Wu H J, Ding X D, Sun J and Zhao L D 2021 J. Mater. Chem. A 9 23011
[24] Wang H G, Jiang X J, Wang Y, Stark R W, van Aken P A, Mannhart J and Boschker H 2020 Nano Lett. 20 88
[25] Hÿtch M J, Snoeck E and Kilaas R 1998 Ultramicrosc 74 131
[26] Neaton J B, Ederer C, Waghmare U V, Spaldin N A and Rabe K M 2005 Phys. Rev. B 71 014113
[27] Chen S Q, Yuan S, Hou Z P, Tang Y L, Zhang J P, Wang T, Li K, Zhao W W, Liu X J, Chen L, Martin L W and Chen Z H 2020 Adv. Mater. 33 2000857
[28] Liu Z R, Wang H, Li M, Tao L L, Paudel T R, Yu H Y, Wang Y X, Hong S Y, Zhang M, Ren Z H, Xie Y W, Tsymbal E Y, Chen J S, Zhang Z and Tian H 2023 Nature 613 656
[29] Jia C L, Nagarajan V, He J Q, Houben L, Zhao T, Ramesh R, Urban K and Waser R 2007 Nat. Mater. 6 64
[30] Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin, S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J and Ramesh R 2009 Nat. Mater. 8 229
[31] Nelson C T, Winchester B, Zhang Y, Kim S J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q and Pan X Q 2011 Nano Lett. 11 828
[32] Gao W P, Addiego C, Wang H, Yan X X, Hou Y S, Ji D X, Heikes C, Zhang Y, Li L Z, Huyan H, Blum T, Aoki T, Nie Y F, Schlom D G, Wu R and Pan X Q 2019 Nature 575 480
[33] Wu H J, Zhang Y, Wu J G, Wang J and Pennycook S J 2019 Adv. Funct. Mater. 29 1902911
[34] Zeches R J, Rossell M D, Zhang J X, et al. 2009 Science 326 977
[35] Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Chen L Q, Shrout T R and Zhang S J 2018 Nat. Mater. 17 349
[36] Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G and Pennycook S J 2019 J. Am. Chem. Soc. 141 13987
[37] Zhang N, Zheng T, Li N, Zhao C L, Yin J, Zhang Y, Wu H J, Pennycook S J and Wu J G 2021 ACS Appl. Mater. Interfaces 13 7461
[38] Zhao C L, Wu H J, Li F, Cai Y Q, Zhang Y, Song D S, Wu J G, Lyu X, Yin J, Xiao D Q, Zhu J G and Pennycook S J 2018 J. Am. Chem. Soc. 140 15252
[39] Fu H X and Bellaiche L 2003 Phys. Rev. Lett. 91 257601
[40] Naumov I I, Bellaiche L and Fu H X 2004 Nature 432 737
[41] Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schleputz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W and Ramesh R 2016 Nature 534 138
[42] Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368
[43] Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B and Ma X L 2020 Nat. Mater. 19 881
[44] Jeong C, Lee J, Jo H, Oh J, Baik H, Go K J, Son J, Choi S Y, Prosandeev S, Bellaiche L and Yang Y 2024 Nat. Commun. 15 3887
[45] Dong G H, Li S Z, Li T, et al. 2020 Adv. Mater. 32 2004477
[46] Fu Z Q, Chen X F, Li Z Q, Hu T F, Zhang L L, Lu P, Zhang S J, Wang G S, Dong X K and Xu F F 2020 Nat. Commun. 11 3809
[47] Liu Y X, Qu W B, Thong H C, Zhang Y, Zhang Y F, Yao F Z, Nguyen T N, Li J W, Zhang M H, Li J F, Han B, Gong W, Wu H J, Wu C F, Xu B and Wang K 2022 Adv. Mater. 34 2202558
[48] Wang H, Wu H J, Chi X, Li Y Y, Zhou C H, Yang P, Yu X J, Wang J, Chow G M, Yan X, Pennycook S J and Chen J S 2022 ACS Appl. Mater. Interfaces 14 8557
[49] Li J L, Qu W B, Daniels J, Wu H J, Liu L J, Wu J, Wang M W, Checchia S, Yang S, Lei H B, Lv R, Zhang Y, Wang D Y, Li X X, Ding X D, Sun J, Xu Z, Chang Y F, Zhang S J and Li F 2023 Science 380 87
[50] Wu H J, Ning S C, Waqar M, Liu H J, Zhang Y, Wu H H, Li N, Wu Y, Yao K, Lookman T, Ding X D, Sun J, Wang J and Pennycook S J 2021 Nat. Commun. 12 2841
[51] Gao P, Yang S Z, Ishikawa R, Li N, Feng B, Kumamoto A, Shibata N, Yu P and Ikuhara Y 2018 Phys. Rev. Lett. 120 267601
[52] Li L Z, Cheng X X, Jokisaari J R, Gao P, Britson J, Adamo C, Heikes C, Schlom D G, Chen L Q and Pan X Q 2018 Phys. Rev. Lett. 120 137602
[53] Waqar M, Wu H J, Ong K P, Liu H J, Li C J, Yang P, Zang W J, Liew W H, Diao C Z, Xi S B, Singh D J, He Q, Yao K, Pennycook S J and Wang J 2022 Nat. Commun. 13 3922
[54] Liu H J, Wu H J, Ong K P, Yang T N, Yang P, Das P K, Chi X, Zhang Y, Diao C Z, Wong W K A, Chew E P, Chen Y F, Tan C K I, Rusydi A, Breese M B H, Singh D J, Chen L Q, Pennycook S J and Yao K 2020 Science 369 292
[55] Li N, Zhu R X, Cheng X X, Liu H J, Zhang Z Y, Huang Y L, Chu Y H, Chen L Q, Ikuhara Y and Gao P 2021 Scripta Mater. 194 113624
[1] Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(8): 080301.
[2] Deep-subwavelength single grooves prepared by femtosecond laser direct writing on Si
Rui-Xi Ye(叶瑞熙) and Min Huang(黄敏). Chin. Phys. B, 2024, 33(8): 087901.
[3] Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings
Zelin Tan(谭泽林), Jianfa Zhang(张检发), Zhihong Zhu(朱志宏), Wei Chen(陈伟), Zhengzheng Shao(邵铮铮), Ken Liu(刘肯), and Shiqiao Qin(秦石乔). Chin. Phys. B, 2024, 33(6): 064205.
[4] Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device
Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航). Chin. Phys. B, 2024, 33(6): 068502.
[5] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
[6] A novel order-reduced thermal-coupling electrochemical model for lithium-ion batteries
Yizhan Xie(谢奕展), Shuhui Wang(王舒慧), Zhenpo Wang(王震坡), and Ximing Cheng(程夕明). Chin. Phys. B, 2024, 33(5): 058203.
[7] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[8] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[9] Polarization control of above-threshold ionization spectrum in elliptically polarized two-color laser fields
Fa-Cheng Jin(金发成), Hui-Hui Yang(杨慧慧), Xiao-Hong Song(宋晓红), Fei Li(李飞), Ling-Ling Du(杜玲玲), Hong-Jie Xue(薛红杰), Li-Min Wei(魏丽敏), Yue Bai(白悦), Hao-Xiang Liu(刘浩翔), Bing-Bing Wang(王兵兵), and Wei-Feng Yang(杨玮枫). Chin. Phys. B, 2024, 33(4): 043301.
[10] Effect of electron-electron interaction on polarization process of exciton and biexciton in conjugated polymer
Xiao-Xue Li(李晓雪), Hua Peng(彭华), Dong Wang(王栋), and Dong Hou(侯栋). Chin. Phys. B, 2024, 33(3): 037201.
[11] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[12] Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
Ya-Jie Zhang(张亚杰), Chao-Long Li(李潮龙), Jia-Qi Luan(栾迦淇), Ming Zhao(赵茗), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2024, 33(10): 104210.
[13] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[14] A 1-bit electronically reconfigurable beam steerable metasurface reflectarray with multiple polarization manipulations
Yan Shi(史琰), Xi-Ya Xu(徐茜雅), Shao-Ze Wang(王少泽), Wen-Yue Wei(魏文岳), and Quan-Wei Wu(武全伟). Chin. Phys. B, 2024, 33(1): 014201.
[15] Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
Fei Wang(王斐), Yaling Zhang(张亚玲), Wenjia Yang(杨文佳), Huisheng Zhang(张会生), and Xiaohong Xu(许小红). Chin. Phys. B, 2024, 33(1): 017306.
No Suggested Reading articles found!