Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 116401    DOI: 10.1088/1674-1056/ad73b0
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The hcp-bcc transition of Be via anisotropy of modulus and sound velocity

Zhen Yang(杨真)1,2, Jia-Wei Xian(咸家伟)2, Xing-Yu Gao(高兴誉)2,†, Fu-Yang Tian(田付阳)1,‡, and Hai-Feng Song(宋海峰)2
1 Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 National Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Based on ab initio calculations, we utilize the mean-field potential approach with the quantum modification in conjunction with stress-strain relation to investigate the elastic anisotropies and sound velocities of hcp and bcc Be under high-temperature (0-6000 K) and high-pressure (0-500 GPa) conditions. We propose a general definition of anisotropy for elastic moduli and sound velocities. Results suggest that the elastic anisotropy of Be is more significantly influenced by pressure than by temperature. The pressure-induced increase of $c/a$ ratio makes the anisotropy of hcp Be significantly strengthen. Nevertheless, the hcp Be still exhibits smaller anisotropy than bcc Be in terms of elastic moduli and sound velocities. We suggest that measuring the anisotropy in shear sound velocity may be an approach to distinguishing the hcp-bcc phase transition under extreme conditions.
Keywords:  anisotropy      phase transition      elastic and sound properties      mean-field potential  
Received:  17 May 2024      Revised:  09 August 2024      Accepted manuscript online:  27 August 2024
PACS:  64.70.-p (Specific phase transitions)  
  46.25.Hf (Thermoelasticity and electromagnetic elasticity (electroelasticity, magnetoelasticity))  
  46.40.-f (Vibrations and mechanical waves)  
  46.25.Cc (Theoretical studies)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. U23A20537, U2230401, and 52371174) and Funding of National Key Laboratory of Computational Physics.
Corresponding Authors:  Xing-Yu Gao, Fu-Yang Tian     E-mail:  gao_xingyu@iapcm.ac.cn;fuyang@ustb.edu.cn

Cite this article: 

Zhen Yang(杨真), Jia-Wei Xian(咸家伟), Xing-Yu Gao(高兴誉), Fu-Yang Tian(田付阳), and Hai-Feng Song(宋海峰) The hcp-bcc transition of Be via anisotropy of modulus and sound velocity 2024 Chin. Phys. B 33 116401

[1] Migliori A, Ledbetter H, Thoma D J and Darling T W 2004 J. Appl. Phys. 95 2436
[2] Zheng L F, Wang X G, Yue L N, Xie Y J, Wu B P and Zhong J M 2020 Mater. Sci. Forum. 977 261
[3] Wu C J, Myint P C, Pask J E, Prisbrey C J, Correa A A, Suryanarayana P and Varley J B 2021 J. Phys. Chem. A 125 1610
[4] Lazićki A, Dewaele A, Loubeyre P and Mezouar M 2012 Phys. Rev. B 86 174118
[5] Brown J L, Knudson M D, Alexander C S and Asay J R 2014 J. Appl. Phys. 116 033502
[6] McCoy C A, Knudson M D and Desjarlais M P 2019 Phys. Rev. B 100 054107
[7] Robert G, Legrand P and Bernard S 2010 Phys. Rev. B 82 104118
[8] Xian J W, Yan J, Liu H F, Sun T, Zhang G M, Gao X Y and Song H F 2019 Phys. Rev. B 99 064102
[9] Wu J, González-Cataldo F and Militzer B 2021 Phys. Rev. B 104 014103
[10] Ma Y G, Pang L G, Wang R and Zhou K 2023 Chin. Phys. Lett. 40 122101
[11] Wu J, González-Cataldo F, Soubiran F and Militzer B 2022 J. Phys.: Condens. Matter 34 144003
[12] Lu Y, Sun T, Zhang P, Zhang P, Zhang D B and Wentzcovitch R M 2017 Phys. Rev. Lett. 118 145702
[13] Antonangeli D, Occelli F, Requardt H, Badro J, Fiquet G and Krisch M 2004 Earth Planet. Sci. Lett. 225 243
[14] Belonoshko A B, Skorodumova N V, Rosengren A and Johansson B R 2008 Science 319 797
[15] Luo F, Cai L C, Chen X R, Jing F Q and Alfè D 2012 J. Appl. Phys. 111 053503
[16] Walsh K A 2009 Beryllium Chemistry and Processing (ASM International)
[17] Kuksenko V, Roberts S and Tarleton E 2019 Int. J. Plast. 116 62
[18] Kádas K, Vitos L, Johansson B and Kollár J 2007 Phys. Rev. B 75 035132
[19] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[20] Wang Y, Chen D and Zhang X 2000 Phys. Rev. Lett. 84 3220
[21] Wang Y, Ahuja R and Johansson B 2004 Int. J. Quantum Chem. 96 501
[22] Li L and Wang Y 2001 Phys. Rev. B 63 245108
[23] Song H and Liu H 2007 Phys. Rev. B 75 245126
[24] Song H, Tian M, Liu H, Song H and Zhang G 2014 Chin. Phys. Lett. 31 016402
[25] Gao X, Yang Z, Fang J, Xian J, Liu H and Song H A multiphase fast previewer based on mean-field potential approach: Beryllium as a prototype (in preparation)
[26] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[27] Jian D, Zhu X, Liu Y, Song H and Lai X 2021 Mater. Rep. 35 1082 (in Chinese)
[28] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[29] Mermin N D 1965 Phys. Rev. 137 A1441
[30] Wang Y, Wang J J, Zhang H, Manga V R, Shang S L, Chen L Q and Liu Z K 2010 J. Phys.: Condens. Matter 22 225404
[31] Zener C 1948 Phys. Rev. 74 639
[32] Every A 1980 Phys. Rev. B 22 1746
[33] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[34] Steinle-Neumann G, Stixrude L and Cohen R E 1999 Phys. Rev. B 60 791
[35] Ledbetter H and Migliori A 2006 J. Appl. Phys. 100 063516
[36] Beason M T, Jensen B J and Crockett S D 2021 Phys. Rev. B 104 144106
[37] Marsh S P 1980 LASL Shock Hugoniot Data (University of California Press) 5 p. 21
[38] Tan H 2018 Experimental Shock Wave Physics (Beijing: National Defense Industry Press) p. 177
[39] Mao H K, Shu J, Shen G, Hemley R J, Li B and Singh A K 1998 Nature 396 741
[1] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[2] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[3] Dendritic tip selection during solidification of alloys: Insights from phase-field simulations
Qingjie Zhang(张清杰), Hui Xing(邢辉), Lingjie Wang(王灵杰), and Wei Zhai(翟薇). Chin. Phys. B, 2024, 33(9): 096103.
[4] Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction
Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏). Chin. Phys. B, 2024, 33(9): 097601.
[5] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[6] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[7] Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases
Xing-Zhou Tang(汤星舟), Jia-Yao Ye(叶家耀), Zi-Ye Wang(王子烨), Hao-Yi Jiang(姜皓译), Xiao-Hu Shang(尚小虎), Zhao-Yan Yang(杨朝雁), and Bing-Xiang Li(李炳祥). Chin. Phys. B, 2024, 33(8): 087702.
[8] First-principles study of electronic and magnetic properties of Fe atoms on Cu2N/Cu(100)
Jiale Chen(陈佳乐) and Jun Hu(胡军). Chin. Phys. B, 2024, 33(8): 087502.
[9] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[10] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[11] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[12] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[13] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[14] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
[15] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
No Suggested Reading articles found!