Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117101    DOI: 10.1088/1674-1056/ad7afe
RAPID COMMUNICATION Prev   Next  

Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy

Man Li(李满)1,†, Qi Wang(王琦)2, Liqin Zhou(周丽琴)3,4, Wenhua Song(宋文华)2, Huan Ma(马欢)2, Pengfei Ding(丁鹏飞)2, Alexander Fedorov5,6,7, Yaobo Huang(黄耀波)8, Bernd Büchner5,9, Hechang Lei(雷和畅)2,‡, Shancai Wang(王善才)2,§, and Rui Lou(娄睿)5,6,7,¶
1 School of Information Network Security, People's Public Security University of China, Beijing 100038, China;
2 Department of Physics, Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), and Beijing Key Laboratory of Opto-electronic Functional Materials & Micronano Devices, Renmin University of China, Beijing 100872, China;
3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 Leibniz Institute for Solid State and Materials Research, IFW Dresden, Dresden 01069, Germany;
6 Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Stra?e 15, Berlin 12489, Germany;
7 Joint Laboratory "Functional Quantum Materials" at BESSY II, Berlin 12489, Germany;
8 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
9 Institute for Solid State and Materials Physics, TU Dresden, Dresden 01062, Germany
Abstract  Searching for the dispersionless flat band (FB) in quantum materials, especially in topological systems, becomes an interesting topic. The kagome lattice is an ideal platform for such exploration because the FB can be naturally induced by the underlying destructive interference. Nevertheless, the magnetic kagome system that hosts the FB close to the Fermi level ($E_{\rm F}$) is exceptionally rare. Here, we study the electronic structure of a kagome magnet LuMn$_6$Sn$_6$ by combining angle-resolved photoemission spectroscopy and density functional theory calculations. The observed Fermi-surface topology and overall band dispersions are similar to previous studies of the $X$Mn$_6$Sn$_6$ ($X = {\rm Dy}$, Tb, Gd, Y) family of compounds. We clearly observe two kagome-derived FBs extending through the entire Brillouin zone, and one of them is located just below $E_{\rm F}$. The photon-energy-dependent measurements reveal that these FBs are nearly dispersionless along the $k_z$ direction as well, supporting the quasi-two-dimensional character of such FBs. Our results complement the $X$Mn$_6$Sn$_6$ family and demonstrate the robustness of the FB features across this family.
Keywords:  flat band      kagome magnet      angle-resolved photoemission spectroscopy  
Received:  22 July 2024      Revised:  02 September 2024      Accepted manuscript online:  14 September 2024
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204536), the Fundamental Research Funds for the Central Universities, and the Research Funds of People’s Public Security University of China (PPSUC) (Grant No. 2023JKF02ZK09).
Corresponding Authors:  Man Li, Hechang Lei, Shancai Wang, Rui Lou     E-mail:  lmrucphys@ruc.edu.cn;hlei@ruc.edu.cn;scw@ruc.edu.cn;lourui09@gmail.com

Cite this article: 

Man Li(李满), Qi Wang(王琦), Liqin Zhou(周丽琴), Wenhua Song(宋文华), Huan Ma(马欢), Pengfei Ding(丁鹏飞), Alexander Fedorov, Yaobo Huang(黄耀波), Bernd Büchner, Hechang Lei(雷和畅), Shancai Wang(王善才), and Rui Lou(娄睿) Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy 2024 Chin. Phys. B 33 117101

[1] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M 2021 Nat. Phys. 17 374
[2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[3] Lisi S, Lu X, Benschop T, et al. 2021 Nat. Phys. 17 189
[4] Han T, Lu Z, Scuri G, Sung J, Wang J, Han T, Watanabe K, Taniguchi T, Park H and Ju L 2024 Nat. Nanotechnol. 19 181
[5] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137
[6] Teng X, Chen L, Ye F, Rosenberg E, Liu Z, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M and Dai P 2022 Nature 609 490
[7] Lou R, Fedorov A, Yin Q, Kuibarov A, Tu Z, Gong C, Schwier E F, Büchner B, Lei H and Borisenko S 2022 Phys. Rev. Lett. 128 036402
[8] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502
[9] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405
[10] Zhong Y, Liu J, Wu X, et al. 2023 Nature 617 488
[11] Xu G, Lian B and Zhang S C 2015 Phys. Rev. Lett. 115 186802
[12] Yin J X, Ma W, Cochran T A, et al. 2020 Nature 583 533
[13] Zhang T, Yilmaz T, Vescovo E, Li H X, Moore R G, Lee H N, Miao H, Murakami S and McGuire M A 2022 npj Comput. Mater. 8 155
[14] Wang Y, Wu H, McCandless G T, Chan J Y and Ali M N 2023 Nat. Rev. Phys. 5 635
[15] Peng S, Han Y, Pokharel G, Shen J, Li Z, Hashimoto M, Lu D, Ortiz B R, Luo Y, Li H, Guo M, Wang B, Cui S, Sun Z, Qiao Z, Wilson S D and He J 2021 Phys. Rev. Lett. 127 266401
[16] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[17] Liu Z, Liu F and Wu Y S 2014 Chin. Phys. B 23 077308
[18] Ohgushi K, Murakami S and Nagaosa N 2000 Phys. Rev. B 62 R6065
[19] Sun K, Gu Z, Katsura H and Das Sarma S 2011 Phys. Rev. Lett. 106 236803
[20] Venderbos J W F, Daghofer M and van den Brink J 2011 Phys. Rev. Lett. 107 116401
[21] Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett. 106 236804
[22] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802
[23] Liu Z, Wang Z F, Mei J W, Wu Y S and Liu F 2013 Phys. Rev. Lett. 110 106804
[24] Mielke A 1991 J. Phys. A: Math. General 24 3311
[25] Mielke A 1992 J. Phys. A: Math. General 25 4335
[26] Imada M and Kohno M 2000 Phys. Rev. Lett. 84 143
[27] Peotta S and Törmä P 2015 Nat. Commun. 6 8944
[28] Huber S D and Altman E 2010 Phys. Rev. B 82 184502
[29] Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401
[30] Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353
[31] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[32] Mielke C, Das D, Yin J X, et al. 2022 Nature 602 245
[33] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[34] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222
[35] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[36] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645
[37] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 604 59
[38] Arachchige H W S, Meier W R, Marshall M, Matsuoka T, Xue R, McGuire M A, Hermann R P, Cao H and Mandrus D 2022 Phys. Rev. Lett. 129 216402
[39] Hu T, Pi H, Xu S, Yue L, Wu Q, Liu Q, Zhang S, Li R, Zhou X, Yuan J, Wu D, Dong T, Weng H and Wang N 2023 Phys. Rev. B 107 165119
[40] Hu Y, Ma J, Li Y, Gawryluk D J, Hu T, Teyssier J, Multian V, Yin Z, Jiang Y, Xu S, Shin S, Plokhikh I, Han X, Plumb N C, Liu Y, Yin J, Guguchia Z, Zhao Y, Schnyder A P, Wu X, Pomjakushina E, Hasan M Z, Wang N and Shi M 2023 2024 Nat. Commun. 15 1658
[41] Korshunov A, Hu H, Subires D, Jiang Y, Cǎlugǎru D, Feng X, Rajapitamahuni A, Yi C, Roychowdhury S, Vergniory M G, Strempfer J, Shekhar C, Vescovo E, Chernyshov D, Said A H, Bosak A, Felser C, Bernevig B A and Blanco-Canosa S 2023 Nat. Commun. 14 6646
[42] Pokharel G, Ortiz B, Chamorro J, Sarte P, Kautzsch L, Wu G, Ruff J and Wilson S D 2022 Phys. Rev. Mater. 6 104202
[43] Haldane F D M 2004 Phys. Rev. Lett. 93 206602
[44] Ma W, Xu X, Wang Z, Zhou H, Marshall M, Qu Z, Xie W and Jia S 2021 Phys. Rev. B 103 235109
[45] Ma W, Xu X, Yin J X, Yang H, Zhou H, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett. 126 246602
[46] Dhakal G, Cheenicode Kabeer F, Pathak A K, Kabir F, Poudel N, Filippone R, Casey J, Pradhan Sakhya A, Regmi S, Sims C, Dimitri K, Manfrinetti P, Gofryk K, Oppeneer P M and Neupane M 2021 Phys. Rev. B 104 L161115
[47] Chen D, Le C, Fu C, Lin H, Schnelle W, Sun Y and Felser C 2021 Phys. Rev. B 103 144410
[48] Gu X, Chen C, Wei W S, et al. 2022 Phys. Rev. B 105 155108
[49] Wang Q, Neubauer K J, Duan C, Yin Q, Fujitsu S, Hosono H, Ye F, Zhang R, Chi S, Krycka K, Lei H and Dai P 2021 Phys. Rev. B 103 014416
[50] Liu Z, Zhao N, Li M, Yin Q, Wang Q, Liu Z, Shen D, Huang Y, Lei H, Liu K and Wang S 2021 Phys. Rev. B 104 115122
[51] Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z and Wang S 2021 Nat. Commun. 12 3129
[52] Venturini G, Fruchart D and Malaman B 1996 J. Alloys Compd. 236 102
[53] Hüfner S 2003 Photoelectron Spectroscopy: Principles and Applications (Berlin: Springer)
[54] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[55] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[56] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[57] Kulik H J, Cococcioni M, Scherlis D A and Marzari N 2006 Phys. Rev. Lett. 97 103001
[58] Shirley E L, Terminello L J, Santoni A and Himpsel F J 1995 Phys. Rev. B 51 13614
[59] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004
[60] Liu Z, Li M, Wang Q, Wang G, Wen C, Jiang K, Lu X, Yan S, Huang Y, Shen D, Yin J X, Wang Z, Yin Z, Lei H and Wang S 2020 Nat. Commun. 11 4002
[61] Li H, Zhao H, Jiang K, Wang Q, Yin Q, Zhao N N, Liu K, Wang Z, Lei H and Zeljkovic I 2022 Nat. Phys. 18 644
[62] Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W and Mazin I I 2020 Sci. Adv. 6 eabe2680
[63] Li L, Chi S, Ma W, Guo K, Xu G and Jia S 2024 Chin. Phys. B 33 057501
[64] Yin J X, Zhang S S, Li H, et al. 2018 Nature 562 91
[65] Lou R, Zhou L, Song W, Fedorov A, Tu Z, Jiang B, Wang Q, Li M, Liu Z, Chen X, Rader O, Büchner B, Sun Y, Weng H, Lei H and Wang S 2023 arXiv: 2309.06399 [cond-mat.str-el]
[66] Yang T Y, Wan Q, Song J P, Du Z, Tang J, Wang Z W, Plumb N C, Radovic M, Wang G W, Wang G Y, Sun Z, Yin J X, Chen Z H, Huang Y B, Yu R, Shi M, Xiong Y M and Xu N 2022 Quantum Frontiers 1 14
[67] Song B, Xie Y, Li W J, Liu H, Zhang Q, gang Guo J, Zhao L, Yu S L, Zhou X, Chen X and Ying T 2024 arXiv:2404.12374 [cond-mat.str-el]
[1] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[2] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[3] Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy
Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
[4] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[5] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[6] Layered kagome compound Na2Ni3S4 with topological flat band
Junyao Ye(叶君耀), Yihao Lin(林益浩), Haozhe Wang(王浩哲), Zhida Song(宋志达), Ji Feng(冯济), Weiwei Xie(谢韦伟), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057103.
[7] Enhanced anomalous Hall effect in kagome magnet YbMn6Sn6 with intermediate-valence ytterbium
Longfei Li(李龙飞), Shengwei Chi(迟晟玮), Wenlong Ma(马文龙), Kaizhen Guo(郭凯臻), Gang Xu(徐刚), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057501.
[8] Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe4
Qingxin Liu(刘清馨), Yang Fu(付阳), Pengfei Ding(丁鹏飞), Huan Ma(马欢), Pengjie Guo(郭朋杰), Hechang Lei(雷和畅), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(4): 047104.
[9] Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(2): 027102.
[10] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[11] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[12] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[13] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[14] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[15] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
No Suggested Reading articles found!