INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
Optical design of the time-resolved ARPES beamline of the new material spectroscopy experimental station for the update of CAEP THz-FEL facility |
Liang-Liang Du(杜亮亮), Li-Min Meng(孟立民)†, Jiang Li(李江), and Li-Guo Zhu(朱礼国) |
Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China |
|
|
Abstract The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility (CAEP THz FEL, CTFEL) is the only high-average power free electron laser terahertz source based on superconducting accelerators in China. The update of the CTFEL is now undergoing and will expand the frequency range from 0.1-4.2 THz to 0.1-125 THz. Two experimental stations for material spectroscopy and biomedicine will be built. A high harmonic generation (HHG) lightsource based beamline at the material spectroscopy experimental station for time-resolved angle-resolved photoemission spectroscopy (ARPES) research will be constructed and the optical design is presented. The HHG lightsource covers the extreme ultraviolet (XUV) photon energy range of 20-50 eV. A Czerny-Turner monochromator with two plane gratings worked in conical diffraction configuration is employed to maintain the transmission efficiency and preserve the pulse time duration. The calculated beamline transmission efficiency is better than 5% in the whole photon energy range. To our knowledge, this is the first time in China to combine THz-infrared FEL with HHG light source, and this experimental station will be a powerful and effective instrument that will give new research opportunities in the future for users doing research on the dynamic evolution of the excited electron band structure of a material's surface.
|
Received: 28 May 2024
Revised: 20 August 2024
Accepted manuscript online: 27 August 2024
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
32.80.Wr
|
(Other multiphoton processes)
|
|
Corresponding Authors:
Li-Min Meng
E-mail: menglimin82@126.com
|
Cite this article:
Liang-Liang Du(杜亮亮), Li-Min Meng(孟立民), Jiang Li(李江), and Li-Guo Zhu(朱礼国) Optical design of the time-resolved ARPES beamline of the new material spectroscopy experimental station for the update of CAEP THz-FEL facility 2024 Chin. Phys. B 33 114203
|
[1] Wu D, Li M, Yang X, Wang H, Luo X, Shen X, Xiao D, Wang J, Li P, Li X, Zhou K, Lao C, Xu Y, Zhang P, Yan L, Lin S, Pan Q, Shan L, He T, Bai W, Yang L, Deng D, Zhang H, Liu J, Chen Y and Feng D 2018 J. Phys. Conf. Ser. 1067 32010 [2] Oepts D, van der Meer A F G and van Amersfoort P W 1995 Infrared Phys. Technol 36 297 [3] Shevchenko O A, Arbuzov V S, Vinokurov N A, et al. 2016 Physics Procedia 84 13 [4] Gabriel F, Gippner P, Grosse E, Janssen D, Michel P, Prade H, Schamlott A, Seidel W, Wolf A, Unsch R W and ELBE-crew 2000 Nucl. Instrum. Methods Phys. Res. B 161-163 1143 [5] Zhou K, Li P, Zhou Z, Xiao D X, Wang J X, Wang H B, Luo X, Shan L J, Shen X M, He T H, Lao C L, Yan L G, Xu Y, Zhang P, Chen L J, Wang W J, Liu Y, Liu J, Yang X F, Wu D and Li M 2022 High Power Laser and Particle Beams 34 104013 (in Chinese) [6] Zonno M, Boschini F and Damascelli A 2021 J. Electron. Spectros. Relat. Phenomena 251 147091 [7] Reimann J, Schlauderer S, Schmid C P, Langer F, Baierl S, Kokh K A, Tereshchenko O E, Kimura A, Lange C, Güdde J, Höfer U and Huber R 2018 Nature 562 396 [8] Ito S, Schüler M, Meierhofer M, Schlauderer S, Freudenstein J, Reimann J, Afanasiev D, Kokh K A, Tereshchenko O E, Güdde J, Sentef M A, Höfer U and Huber R 2023 Nature 616 696 [9] Wu T, Wang H, Yang Y, Duan S, Huang C, Tang T, Guo Y, Luo W and Zhang W 2022 Chin. Phys. B 31 27902 [10] Mills A K, Zhdanovich S, Na M X, Boschini F, Razzoli E, Michiardi M, Sheyerman A, Schneider M, Hammond T J, Süss V, Felser C, Damascelli A and Jones D J 2019 Rev. Sci. Instrum. 90 83001 [11] Chen F, Wang J, Pan M, Liu J, Huang J, Zhao K, Yun C, Qian T, Wei Z and Ding H 2023 Rev. Sci. Instrum. 94 43905 [12] Sie E J, Rohwer T, Lee C and Gedik N 2019 Nat. Commun. 10 3535 [13] Peli S, Puntel D, Kopic D, Sockol B, Parmigiani F and Cilento F 2020 J. Electron. Spectros. Relat. Phenomena 243 146978 [14] Buss J H, Wang H, Xu Y, Maklar J, Joucken F, Zeng L, Stoll S, Jozwiak C, Pepper J, Chuang Y, Denlinger J D, Hussain Z, Lanzara A and Kaindl R A 2019 Rev. Sci. Instrum. 90 23105 [15] Puppin M, Deng Y, Nicholson C W, Feldl J, Schröter N B M, Vita H, Kirchmann P S, Monney C, Rettig L, Wolf M and Ernstorfer R 2019 Rev. Sci. Instrum. 90 23104 [16] Bühlmann K, A, Gort R, Fognini A, Däster S, Holenstein S, Hartmann N, Zemp Y, Salvatella G, Michlmayr T U, Bähler T, Kutnyakhov D, Medjanik K, Schönhense G, Vaterlaus A and Acremann Y B 2020 Rev. Sci. Instrum. 91 63001 [17] Eckstein M 2021 J. Electron. Spectros. Relat. Phenomena 253 147108 [18] Poletto L and Frassetto F 2010 Appl. Opt. 49 5465 [19] Frassetto F, Cacho C, Froud C A, Turcu I C E, Villoresi P, Bryan W A, Springate E and Poletto L 2011 Opt. Express 19 19169 [20] Cash W and Kohnert R 1982 Appl. Opt. 21 17 [21] Werner W 1977 Appl. Opt. 16 2078 [22] Rebuffi L and Sanchez del Rio M 2017 Proc. SPIE 10388 103880S |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|