CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of temperature on heavy ion-induced single event transient on 16-nm FinFET inverter chains |
Li Cai(蔡莉)1,†, Ya-Qing Chi(池雅庆)3, Bing Ye(叶兵)1,‡, Yu-Zhu Liu(刘郁竹)1,2, Ze He(贺泽)1,2, Hai-Bin Wang(王海滨)4, Qian Sun(孙乾)3, Rui-Qi Sun(孙瑞琪)3, Shuai Gao(高帅)1,2, Pei-Pei Hu(胡培培)1, Xiao-Yu Yan(闫晓宇)1,2, Zong-Zhen Li(李宗臻)1, and Jie Liu(刘杰)1,§ |
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 College of Computer Science, National University of Defense Technology, Changsha 410073, China; 4 College of IoT Engineering, Hohai University, Changzhou 213022, China |
|
|
Abstract The variations of single event transient (SET) pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor (FinFET) inverter chains with different driven strengths are measured at different temperatures. Three-dimensional (3D) technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature. Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk FinFET technology, resulting in the increase of SET pulse width. On the other hand, the increase of inverter driven strength will change the layout topology, which has a complex influence on the SET temperature effects of FinFET inverter chains. The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.
|
Received: 04 July 2022
Revised: 19 August 2022
Accepted manuscript online: 02 September 2022
|
PACS:
|
61.82.Fk
|
(Semiconductors)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12035019, 12105339, and 62174180) and the Opening Special Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, China (Grant No. SKLIPR2113). |
Corresponding Authors:
Li Cai, Bing Ye, Jie Liu
E-mail: caili@impcas.ac.cn;yebing@impcas.ac.cn;j.liu@impcas.ac.cn
|
Cite this article:
Li Cai(蔡莉), Ya-Qing Chi(池雅庆), Bing Ye(叶兵), Yu-Zhu Liu(刘郁竹), Ze He(贺泽), Hai-Bin Wang(王海滨), Qian Sun(孙乾), Rui-Qi Sun(孙瑞琪), Shuai Gao(高帅), Pei-Pei Hu(胡培培), Xiao-Yu Yan(闫晓宇), Zong-Zhen Li(李宗臻), and Jie Liu(刘杰) Effect of temperature on heavy ion-induced single event transient on 16-nm FinFET inverter chains 2023 Chin. Phys. B 32 046101
|
[1] Taur Y, Buchanan D A, Chen W, Frank D J, Ismail K E, Lo S H, Halasz G S, Viswanathan R G, Wann H J and Wind S J 1997 Proc. IEEE 85 486 [2] Frank D J, Dennard R H, Nowak E, Solomon P M, Taur Y and Wong H P 2001 Proc. IEEE 89 259 [3] Hisamoto D, Lee W C, Kedzierski J, Takeuchi H, Asano K, Kuo C, Anderson E, King T J, Bokor J and Hu C 2000 IEEE Trans. Electron Dev. 47 2320 [4] Wu S Y, Lin C Y, Chiang M C, Liaw J J, Cheng J Y, Yang S H, Chang S Z, Liang M, Miyashita T, Tsai C H, Chang C H, Chang V S, Wu Y K, Chen J H, Chen H F, Chang S Y, Pan K H, Tsui R F, Yao C H, Ting K C, Yamamoto T, Huang H T, Lee T L, Lee C H, Chang W, Lee H M, Chen C C, Chang T, Chen R, Chiu Y H, Tsai M H, Jang S M, Chen K S and Ku Y 2014 IEEE International Electron Devices Meeting, December 15-17, 2014, San Francisco, USA, p. 3.1.1 [5] Huang R, Jiang X B, Guo S F, Ren P P, Hao P, Yu Z Q, Zhang Z, Wang Y Y and Wang R S 2017 IEEE International Electron Devices Meeting, December 2-6, 2017, San Francisco, USA, p. 12.4.1 [6] Narasimham B, Hatami S, Anvar A, Harris D M, Lin A, Wang J K, Chatterjee I, Ni K, Bhuva B L, Schrimpf R D, Reed R A and McCurdy M W 2015 IEEE Trans. Nucl. Sci. 62 2578 [7] Karp J, Hart M J, Maillard P, Hellings G and Linten D 2018 IEEE Trans. Nucl. Sci. 65 217 [8] Li D Q, Liu T Q, Wu Z Y, Cai C, Zhao P X, He Z and Liu J 2020 Microelectron. Reliab. 114 113901 [9] Agboola O 2020 A Comparative Study of Radiation Effects on CMOS and FinFET Nano Scale Transistors in Space Applications, Ph.D. Dissertation (Kingsville: Texas A&M University) [10] Jennings D E, Cottini V, Nixon C A, Achterberg R K, Flasar F M, Kunde V G, Romani P N, Samuelson R E, Mamoutkine A, Gorius N J P, Coustenis A and Tokano T 2016 Astrophys. J. 816 L17 [11] Basilevsky A T and Head J W 2003 Rep. Prog. Phys. 66 1699 [12] Nazari A and Emami H 2008 Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37 949 [13] Truyen D, Boch J, Sagnes B, Renaud N, Leduc E, Arnal S and Saigne F 2007 IEEE Trans. Nucl. Sci. 54 1025 [14] Stapor W J, Johnson R L, Xapsos M A, Fernald K W, Campbell A B, Bhuva B L and Diehi S E 1986 IEEE Trans. Nucl. Sci. 33 1610 [15] Cooper M S, Retzler J P and Messenger G C 1978 IEEE Trans. Nucl. Sci. 25 1538 [16] Johnston A H, Hughlock B W, Baze M P and Plaag R E 1991 IEEE Trans. Nucl. Sci. 38 1435 [17] Alles M L, Massengill L W and Kerns S E 1992 IEEE International SOI Conference, October 6-8, 1992, Ponte Vedra Beach, USA, p. 96 [18] Sanathanamurthy S 2008 Simulated temperature dependency of SEU sensitivity in a 0.5-μm CMOS SRAM, Ph.D. Dissertation (State of Tennessee: Vanderbilt University) [19] Boruzdina A B, Sogoyan A V, Smolin A A, Ulanova A V, Gorbunov M S, Chumakov A I and Boychenko D V 2015 IEEE Trans. Nucl. Sci. 62 2860 [20] Qin J R, C S M and Qin J R 2012 Chin. Phys. B 21 89401 [21] Farjallah E, Gherman V, Armani J M and Dilillo L 2018 13th International Conference on Design Technology of Integrated Systems In Nanoscale Era, April 9-12, 2008, Taormina, Italy, p. 1 [22] Zhang H, Jiang H, Assis T R, Ball D R, Ni K, Kauppila J S, Schrimpf R D, Massengill L W, Bhuva B L, Narasimham B, Hatami S, Anvar A, Lin A and Wang J K 2016 IEEE International Reliability Physics Symposium, April 17-21, 2016, California, USA, p. 5C-3-1 [23] Atkinson N M, Ahlbin J R, Witulski A F, Gaspard N J, Holman W T, Bhuva B L, Zhang E X, Chen L and Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2578 [24] Chen J, Chen S, He Y, Chi Y, Qin J, Liang B and Liu B 2012 IEEE Trans. Nucl. Sci. 59 2859 [25] Fang T, Li L Q, Xia G R and Yu Y H 2021 Chin. Phys. B 30 27301 [26] Laird J S, Hirao T, Onoda S, Mori H and Itoh H 2001 6th European Conference on Radiation and Its Effects on Components and Systems, September 10-14, 2001, Grenoble, France, p. 125 [27] Gadlage M J, Ahlbin J R, Narasimham B, Bhuva B L, Massengill L W and Schrimpf R D 2011 IEEE Trans. Dev. Mater. Reliab. 11 179 [28] Guo G, Hirao T, Laird J S, Onoda S, Wakasa T, Yamakawa T and Kamiya T 2004 IEEE Trans. Nucl. Sci. 51 2834 [29] Truyen D, Boch J, Sagnes B, Vaille J R, Renaud N, Leduc E, Briet M, Heng C, Mouton S and Saigné F 2008 IEEE Trans. Nucl. Sci. 55 2001 [30] Gadlage M J, Ahlbin J R, Ramachandran V, Gouker P, Dinkins C A, Bhuva B L, Narasimham B, Schrimpf R D, McCurdy M W and Alles M L 2009 IEEE Trans. Nucl. Sci. 56 3115 [31] Gadlage M J, Ahlbin J R, Narasimham B, Ramachandran V, Dinkins C A, Pate N D, Bhuva B L, Schrimpf R D, Massengill L W and Shuler R L 2009 IEEE Trans. Dev. Mater. Reliab. 10 157 [32] Chen S M, Liang B, Liu B W and Liu Z 2008 IEEE Trans. Nucl. Sci. 55 2914 [33] Liu B W, Chen S M, Liang B, Liu Z and Zhao Z Y 2009 IEEE Trans. Nucl. Sci. 56 2473 [34] Cao J, Xu L, Wen S J, Fung R, Narasimham B, Massengill L W and Bhuva B L 2020 IEEE International Reliability Physics Symposium, April 28-May 30, 2020, Texas, USA, p. 1 [35] Kaul N, Bhuva B L and Kerns S E 1991 IEEE Trans. Nucl. Sci. 38 1514 [36] Buchner S and Baze M 2001 Nuclear and Space Radiation Effects Conference, July 16-20, 2001, Vancouver, Canada, p. 105 [37] Gadlage M J, Ahlbin J R, Bhuva B L, Massengill L W and Schrimpf R D 2010 IEEE International Reliability Physics Symposium, May 2-6, 2010, California, USA, p. 763 [38] Ahlbin J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L and Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585 [39] Narasimham B, Ramachandran V, Bhuva B L, Schrimpf R D, Witulski A F, Holman W T, Massengill L W, Black J D, Robinson W H and McMorrow D 2006 IEEE Trans. Dev. Mater. Reliab. 6 542 [40] Laird J S, Hirao T, Onoda S, Mori H and Itoh H 2001 European Conference on Radiation and Its Effects on Components and Systems, September 10-14, 2001, Grenoble, France, p. 125 [41] Messenger G C 1982 IEEE Trans. Nucl. Sci. 29 2024 [42] Artola L, Hubert G and Schrimpf R D 2013 IEEE International Reliability Physics Symposium (IRPS), April 14-18, 2013, California, USA, p. SE.1.1 [43] Liu B, Chen S, Liang B, Liu Z and Zhao Z 2009 IEEE Trans. Nucl. Sci. 56 2473 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|