Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127701    DOI: 10.1088/1674-1056/ac01c4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors

Yuan-Yuan Zhang(张元元)1,2, Xiao-Qing Sun(孙晓清)1,2, Jun-Shuai Chai(柴俊帅)1,2,†, Hao Xu(徐昊)1,2, Xue-Li Ma(马雪丽)1,2, Jin-Juan Xiang(项金娟)1,2, Kai Han(韩锴)3, Xiao-Lei Wang(王晓磊)1,2,‡, and Wen-Wu Wang(王文武)1,2
1 Key Laboratory of Microelectronics & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 College of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics and Electronic Science, Weifang University, Weifang 261061, China
Abstract  We study the influence of the thermodynamic coefficients on transient negative capacitance for the Zr-doped HfO2 (HZO) ferroelectric capacitors by the theoretical simulation based on the Landau-Khalatnikov (L-K) theory and experimental measurement of electrical properties in the resistor-ferroelectric capacitor (R-FEC) circuit. Our results show that the thermodynamic coefficients α, β and γ also play a key role for the transient NC effect besides the viscosity coefficient and series resistor. Moreover, the smaller coefficients α and β, the more significant the transient NC effect. In addition, we also find that the thermodynamic process of transient NC does not obey the generally accepted viewpoint of Gibbs free energy minimization.
Keywords:  transient negative capacitance (NC)      ferroelectric      hafnium-zirconium oxide  
Received:  09 May 2021      Revised:  13 May 2021      Accepted manuscript online:  16 May 2021
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Key Project of Science and Technology of China (Grant No. 2017ZX02315001-002).
Corresponding Authors:  Jun-Shuai Chai, Xiao-Lei Wang     E-mail:  chaijunshuai@ime.ac.cn;wangxiaolei@ime.ac.cn

Cite this article: 

Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武) Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors 2021 Chin. Phys. B 30 127701

[1] Moore G E 1998 Proc. IEEE 86 82
[2] He G, Liu J, Chen H, Liu Y, Sun Z, Chen X, Liu M and Zhang L 2014 J. Mater. Chem. C 2 5299
[3] Gao J, He G, Xiao D, Jin P, Jiang S, Li W, Liang S and Zhu L 2017 J. Mater. Sci. Technol. 33 901
[4] He G, Sun Z, Li G and Zhang L 2012 Crit. Rev. Solid State Mater. Sci. 37 131
[5] Hoffmann M, Slesazeck S, Schroeder U and Mikolajick T 2020 Nat. Electron. 3 504
[6] Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y and Wang X R 2017 Acta Phys. Sin. 66 218503 (in Chinese)
[7] Zhang N, Xu K K, Chen Y X, Zhu K F, Zhao J M and Yu Q Y 2019 Acta Phys. Sin. 68 167803 (in Chinese)
[8] Xu X X, Luo Q, Gong T C, Lv H B, Liu Q and Liu M 2021 Chin. Phys. B 30 058702
[9] Theis T N and Solomon P M 2010 Science 327 1600
[10] Zhirnov V V and Cavin R K 2008 Nat. Nanotechnol. 3 77
[11] Salahuddin S and Dattat S 2008 Nano Lett. 8 405
[12] Salvatore G A, Bouvet D and Ionescu A M 2008 Proceedings of the 54th IEEE International Electron Devices Meeting (IEDM), December 3-7, 2008, San Francisco, America, p. 1
[13] Jain A and Alam M A 2014 IEEE Trans. Electron Devices 61 2235
[14] McGuire F A, Cheng Z, Price K and Franklin A D 2016 Appl. Phys. Lett. 109 093101
[15] Yuan Z C, Rizwan S, Wong M, Holland K, Anderson S, Hook T B, Kienle D, Gadelrab S, Gudem P S and Vaidyanathan M 2016 IEEE Trans. Electron Devices 63 4046
[16] Zhou J, Han G, Li Q, Peng Y, Lu X, Zhang C, Zhang J, Sun Q Q, Zhang D W and Hao Y 2016 Proceedings of the 62th IEEE International Electron Devices Meeting (IEDM), December 3-7, 2016, San Francisco, America, p. 12.2. 1
[17] Zhou J, Wu J, Han G, Kanyang R, Peng Y, Li J, Wang H, Liu Y, Zhang J and Sun Q Q 2017 Proceedings of the 63th IEEE International Electron Devices Meeting (IEDM), December 1-5, 2017, San Francisco, America, p. 15.5. 1
[18] Lee M, Chen K T, Liao C Y, Gu S S, Siang G Y, Chou Y C, Chen H Y, Le J, Hong R C and Wang Z Y 2018 Proceedings of the 64th IEEE International Electron Devices Meeting (IEDM), December 2-6, 2018, San Francisco, America, p. 31.8. 1
[19] Si M, Su C J, Jiang C, Conrad N J, Zhou H, Maize K D, Qiu G, Wu C T, Shakouri A and Alam M A 2018 Nat. Nanotechnol. 13 24
[20] Alam M A, Si M and Ye P D 2019 Appl. Phys. Lett. 114 090401
[21] Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X Di and Yang F H 2020 Acta Phys. Sin. 69 137701 (in Chinese)
[22] Khan A I, Keshavarzi A and Datta S 2020 Nat. Electron. 3 588
[23] Li K S, Chen P G, Lai T Y, Lin C H, Cheng C C, Chen C C, Wei Y J, Hou Y F, Liao M H and Lee M H 2015 Proceedings of the 61th IEEE International Electron Devices Meeting (IEDM), December 5-9, 2015, San Francisco, America, p. 22.6. 1
[24] Kwon D, Chatterjee K, Tan A J, Yadav A K, Zhou H, Sachid A B, Dos Reis R, Hu C and Salahuddin S 2017 IEEE Electron Device Lett. 39 300
[25] Zubko P, Wojdel J C, Hadjimichael M, Fernandez-Pena S, Sené A, Luk'yanchuk I, Triscone J M and Íñiguez J 2016 Nature 534 524
[26] Yadav A K, Nguyen K X, Hong Z, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D and Cheema S 2019 Nature 565 468
[27] Khan A I, Chatterjee K, Wang B, Drapcho S, You L, Serrao C, Bakaul S R, Ramesh R and Salahuddin S 2015 Nat. Mater. 14 182
[28] Hoffmann M, Pešić M, Chatterjee K, Khan A I, Salahuddin S, Slesazeck S, Schroeder U and Mikolajick T 2016 Adv. Funct. Mater. 26 8643
[29] Kobayashi M, Ueyama N, Jang K and Hiramoto T 2016 Proceedings of the 62th IEEE International Electron Devices Meeting (IEDM), December 3-7, 2016, San Francisco, America, p. 12.3. 1
[30] Kim Y J, Park H W, Hyun S D, Kim H J, Kim K D, Lee Y H, Moon T, Lee Y B, Park M H and Hwang C S 2017 Nano Lett. 17 7796
[31] Sharma P, Zhang J, Ni K and Datta S 2017 IEEE Electron Device Lett. 39 272
[32] Jang K, Ueyama N, Kobayashi M and Hiramoto T 2018 IEEE J. Electron Devices Society 6 346
[33] Hoffmann M, Slesazeck S and Mikolajick T 2021 APL Mater. 9 020902
[34] Khan A I, Bhowmik D, Yu P, Joo Kim S, Pan X, Ramesh R and Salahuddin S 2011 Appl. Phys. Lett. 99 113501
[35] Appleby D J, Ponon N K, Kwa K S, Zou B, Petrov P K, Wang T, Alford N M and O'Neill A 2014 Nano Lett. 14 3864
[36] Gao W, Khan A, Marti X, Nelson C, Serrao C, Ravichandran J, Ramesh R and Salahuddin S 2014 Nano Lett. 14 5814
[37] Wang Z, Li H, Hu H, Fan Y, Fan R, Li B, Zhang J, Liu H, Fan J and Hou H 2020 Adv. Electron. Mater. 6 1901005
[38] Kittl J, Obradovic B, Reddy D, Rakshit T, Hatcher R and Rodder M 2018 Appl. Phys. Lett. 113 042904
[39] Liu Z, Bhuiyan M and Ma T 2018 Proceedings of the 64th IEEE International Electron Devices Meeting (IEDM), December 2-6, 2018, San Francisco, America, p. 31.2. 1
[40] Van Houdt J and Roussel P 2018 IEEE Electron Device Lett. 39 877
[41] Landau L D and Lifshitz E M 1960 Electrodynamics of Continuous Media (Pergamon, Oxford)
[42] Landau L D 1937 Zh. Eksp. Teor. Fiz. 7 19
[43] Ginzburg V L 1945 Zh. Eksp. Teor. Fiz 15 739
[44] Devonshire A F 1949 Phil. Mag. 40 1040
[45] Chang S C, Avci U E, Nikonov D E, Manipatruni S and Young I A 2018 Phys. Rev. Appl. 9 014010
[46] Song S J, Kim Y J, Park M H, Lee Y H, Kim H J, Moon T, Do Kim K, Choi J H, Chen Z, Jiang A and Hwang C S 2016 Sci. Rep. 6 20825
[47] Saha A K, Datta S and Gupta S K 2018 J. Appl. Phys. 123 105102
[48] Zhang Y, Ma X, Wang X, Han K, Xiang J and Wang W 2020 J. Phys. D:Appl. Phys. 53 455106
[49] Li Y, Wang Y, Lu W, Kong X, Han L and Zhao H 2020 Chin. Phys. B 30 050703
[50] Ricinschi D, Harnagea C, Papusoi C, Mitoseriu L, Tura V and Okuyama M 1998 J. Phys. Condens. Matter 10 477
[51] Jiang S, He G, Liu M, Zhu L, Liang S, Li W, Sun Z and Tian M 2018 Adv. Electron. Mater. 4 1700543
[52] Muller J, Böscke T S, Schröder U, Mueller S, Brauhaus D, Bottger U, Frey L and Mikolajick T 2012 Nano Lett. 12 4318
[53] Zhou Z, Wang J, Chen J, Jiang C, Li L and Liu M 2021 J. Mater. Chem. C 9 649
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[4] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[5] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[6] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[7] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[8] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[9] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[10] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[11] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[12] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[13] Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films
Yu Zhao(赵瑜), Wen-Yue Zhao(赵文悦), Dan-Dan Ju(琚丹丹), Yue-Yue Yao(姚月月), Hao Wang(王豪), Cheng-Yue Sun(孙承月), Ya-Zhou Peng(彭亚洲), Yi-Yong Wu(吴宜勇), and Wei-Dong Fei(费维栋). Chin. Phys. B, 2021, 30(10): 107702.
[14] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[15] Recent advances, perspectives, and challenges inferroelectric synapses
Bo-Bo Tian(田博博), Ni Zhong(钟妮), Chun-Gang Duan(段纯刚). Chin. Phys. B, 2020, 29(9): 097701.
No Suggested Reading articles found!