CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors |
Yuan-Yuan Zhang(张元元)1,2, Xiao-Qing Sun(孙晓清)1,2, Jun-Shuai Chai(柴俊帅)1,2,†, Hao Xu(徐昊)1,2, Xue-Li Ma(马雪丽)1,2, Jin-Juan Xiang(项金娟)1,2, Kai Han(韩锴)3, Xiao-Lei Wang(王晓磊)1,2,‡, and Wen-Wu Wang(王文武)1,2 |
1 Key Laboratory of Microelectronics & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 2 College of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Department of Physics and Electronic Science, Weifang University, Weifang 261061, China |
|
|
Abstract We study the influence of the thermodynamic coefficients on transient negative capacitance for the Zr-doped HfO2 (HZO) ferroelectric capacitors by the theoretical simulation based on the Landau-Khalatnikov (L-K) theory and experimental measurement of electrical properties in the resistor-ferroelectric capacitor (R-FEC) circuit. Our results show that the thermodynamic coefficients α, β and γ also play a key role for the transient NC effect besides the viscosity coefficient and series resistor. Moreover, the smaller coefficients α and β, the more significant the transient NC effect. In addition, we also find that the thermodynamic process of transient NC does not obey the generally accepted viewpoint of Gibbs free energy minimization.
|
Received: 09 May 2021
Revised: 13 May 2021
Accepted manuscript online: 16 May 2021
|
PACS:
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
85.50.-n
|
(Dielectric, ferroelectric, and piezoelectric devices)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the National Key Project of Science and Technology of China (Grant No. 2017ZX02315001-002). |
Corresponding Authors:
Jun-Shuai Chai, Xiao-Lei Wang
E-mail: chaijunshuai@ime.ac.cn;wangxiaolei@ime.ac.cn
|
Cite this article:
Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武) Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors 2021 Chin. Phys. B 30 127701
|
[1] Moore G E 1998 Proc. IEEE 86 82 [2] He G, Liu J, Chen H, Liu Y, Sun Z, Chen X, Liu M and Zhang L 2014 J. Mater. Chem. C 2 5299 [3] Gao J, He G, Xiao D, Jin P, Jiang S, Li W, Liang S and Zhu L 2017 J. Mater. Sci. Technol. 33 901 [4] He G, Sun Z, Li G and Zhang L 2012 Crit. Rev. Solid State Mater. Sci. 37 131 [5] Hoffmann M, Slesazeck S, Schroeder U and Mikolajick T 2020 Nat. Electron. 3 504 [6] Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y and Wang X R 2017 Acta Phys. Sin. 66 218503 (in Chinese) [7] Zhang N, Xu K K, Chen Y X, Zhu K F, Zhao J M and Yu Q Y 2019 Acta Phys. Sin. 68 167803 (in Chinese) [8] Xu X X, Luo Q, Gong T C, Lv H B, Liu Q and Liu M 2021 Chin. Phys. B 30 058702 [9] Theis T N and Solomon P M 2010 Science 327 1600 [10] Zhirnov V V and Cavin R K 2008 Nat. Nanotechnol. 3 77 [11] Salahuddin S and Dattat S 2008 Nano Lett. 8 405 [12] Salvatore G A, Bouvet D and Ionescu A M 2008 Proceedings of the 54th IEEE International Electron Devices Meeting (IEDM), December 3-7, 2008, San Francisco, America, p. 1 [13] Jain A and Alam M A 2014 IEEE Trans. Electron Devices 61 2235 [14] McGuire F A, Cheng Z, Price K and Franklin A D 2016 Appl. Phys. Lett. 109 093101 [15] Yuan Z C, Rizwan S, Wong M, Holland K, Anderson S, Hook T B, Kienle D, Gadelrab S, Gudem P S and Vaidyanathan M 2016 IEEE Trans. Electron Devices 63 4046 [16] Zhou J, Han G, Li Q, Peng Y, Lu X, Zhang C, Zhang J, Sun Q Q, Zhang D W and Hao Y 2016 Proceedings of the 62th IEEE International Electron Devices Meeting (IEDM), December 3-7, 2016, San Francisco, America, p. 12.2. 1 [17] Zhou J, Wu J, Han G, Kanyang R, Peng Y, Li J, Wang H, Liu Y, Zhang J and Sun Q Q 2017 Proceedings of the 63th IEEE International Electron Devices Meeting (IEDM), December 1-5, 2017, San Francisco, America, p. 15.5. 1 [18] Lee M, Chen K T, Liao C Y, Gu S S, Siang G Y, Chou Y C, Chen H Y, Le J, Hong R C and Wang Z Y 2018 Proceedings of the 64th IEEE International Electron Devices Meeting (IEDM), December 2-6, 2018, San Francisco, America, p. 31.8. 1 [19] Si M, Su C J, Jiang C, Conrad N J, Zhou H, Maize K D, Qiu G, Wu C T, Shakouri A and Alam M A 2018 Nat. Nanotechnol. 13 24 [20] Alam M A, Si M and Ye P D 2019 Appl. Phys. Lett. 114 090401 [21] Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X Di and Yang F H 2020 Acta Phys. Sin. 69 137701 (in Chinese) [22] Khan A I, Keshavarzi A and Datta S 2020 Nat. Electron. 3 588 [23] Li K S, Chen P G, Lai T Y, Lin C H, Cheng C C, Chen C C, Wei Y J, Hou Y F, Liao M H and Lee M H 2015 Proceedings of the 61th IEEE International Electron Devices Meeting (IEDM), December 5-9, 2015, San Francisco, America, p. 22.6. 1 [24] Kwon D, Chatterjee K, Tan A J, Yadav A K, Zhou H, Sachid A B, Dos Reis R, Hu C and Salahuddin S 2017 IEEE Electron Device Lett. 39 300 [25] Zubko P, Wojdel J C, Hadjimichael M, Fernandez-Pena S, Sené A, Luk'yanchuk I, Triscone J M and Íñiguez J 2016 Nature 534 524 [26] Yadav A K, Nguyen K X, Hong Z, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D and Cheema S 2019 Nature 565 468 [27] Khan A I, Chatterjee K, Wang B, Drapcho S, You L, Serrao C, Bakaul S R, Ramesh R and Salahuddin S 2015 Nat. Mater. 14 182 [28] Hoffmann M, Pešić M, Chatterjee K, Khan A I, Salahuddin S, Slesazeck S, Schroeder U and Mikolajick T 2016 Adv. Funct. Mater. 26 8643 [29] Kobayashi M, Ueyama N, Jang K and Hiramoto T 2016 Proceedings of the 62th IEEE International Electron Devices Meeting (IEDM), December 3-7, 2016, San Francisco, America, p. 12.3. 1 [30] Kim Y J, Park H W, Hyun S D, Kim H J, Kim K D, Lee Y H, Moon T, Lee Y B, Park M H and Hwang C S 2017 Nano Lett. 17 7796 [31] Sharma P, Zhang J, Ni K and Datta S 2017 IEEE Electron Device Lett. 39 272 [32] Jang K, Ueyama N, Kobayashi M and Hiramoto T 2018 IEEE J. Electron Devices Society 6 346 [33] Hoffmann M, Slesazeck S and Mikolajick T 2021 APL Mater. 9 020902 [34] Khan A I, Bhowmik D, Yu P, Joo Kim S, Pan X, Ramesh R and Salahuddin S 2011 Appl. Phys. Lett. 99 113501 [35] Appleby D J, Ponon N K, Kwa K S, Zou B, Petrov P K, Wang T, Alford N M and O'Neill A 2014 Nano Lett. 14 3864 [36] Gao W, Khan A, Marti X, Nelson C, Serrao C, Ravichandran J, Ramesh R and Salahuddin S 2014 Nano Lett. 14 5814 [37] Wang Z, Li H, Hu H, Fan Y, Fan R, Li B, Zhang J, Liu H, Fan J and Hou H 2020 Adv. Electron. Mater. 6 1901005 [38] Kittl J, Obradovic B, Reddy D, Rakshit T, Hatcher R and Rodder M 2018 Appl. Phys. Lett. 113 042904 [39] Liu Z, Bhuiyan M and Ma T 2018 Proceedings of the 64th IEEE International Electron Devices Meeting (IEDM), December 2-6, 2018, San Francisco, America, p. 31.2. 1 [40] Van Houdt J and Roussel P 2018 IEEE Electron Device Lett. 39 877 [41] Landau L D and Lifshitz E M 1960 Electrodynamics of Continuous Media (Pergamon, Oxford) [42] Landau L D 1937 Zh. Eksp. Teor. Fiz. 7 19 [43] Ginzburg V L 1945 Zh. Eksp. Teor. Fiz 15 739 [44] Devonshire A F 1949 Phil. Mag. 40 1040 [45] Chang S C, Avci U E, Nikonov D E, Manipatruni S and Young I A 2018 Phys. Rev. Appl. 9 014010 [46] Song S J, Kim Y J, Park M H, Lee Y H, Kim H J, Moon T, Do Kim K, Choi J H, Chen Z, Jiang A and Hwang C S 2016 Sci. Rep. 6 20825 [47] Saha A K, Datta S and Gupta S K 2018 J. Appl. Phys. 123 105102 [48] Zhang Y, Ma X, Wang X, Han K, Xiang J and Wang W 2020 J. Phys. D:Appl. Phys. 53 455106 [49] Li Y, Wang Y, Lu W, Kong X, Han L and Zhao H 2020 Chin. Phys. B 30 050703 [50] Ricinschi D, Harnagea C, Papusoi C, Mitoseriu L, Tura V and Okuyama M 1998 J. Phys. Condens. Matter 10 477 [51] Jiang S, He G, Liu M, Zhu L, Liang S, Li W, Sun Z and Tian M 2018 Adv. Electron. Mater. 4 1700543 [52] Muller J, Böscke T S, Schröder U, Mueller S, Brauhaus D, Bottger U, Frey L and Mikolajick T 2012 Nano Lett. 12 4318 [53] Zhou Z, Wang J, Chen J, Jiang C, Li L and Liu M 2021 J. Mater. Chem. C 9 649 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|